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Abstract
A new method is investigated to reconfigure smart structures using the technique of polynomial
series to approximate a true heteroclinic connection between unstable equilibria in a smart
structure model. We explore the use of polynomials of varying order to first approximate the
heteroclinic connection between two equal-energy, unstable equilibrium points, and then
develop an inverse method to control the dynamics of the system to track the reference
polynomial trajectory. It is found that high-order polynomials can provide a good approximation
to heteroclinic connections and provide an efficient means of generating such trajectories. The
method is used first in a simple smart structure model to illustrate the method and is then
extended to a more complex model where the numerical generation of true heteroclinic
connections is difficult. It is envisaged that being computationally efficient, the method could
form the basis for real-time reconfiguration of smart structures using heteroclinic connections
between equal-energy, unstable configurations.

Keywords: reconfiguring smart structures, polynomial series, heteroclinic connection, inverse
method, feedback linearization

(Some figures may appear in colour only in the online journal)

1. Introduction

Significant research work currently focuses on new materials
which have properties that can be changed in a controlled
fashion by external stimuli, such as stress, temperature,
electric or magnetic fields, for example shape memory
materials [1]. Materials can therefore be designed and man-
ufactured with desirable mechanical properties which can
then be used to develop smart structures [2]. Applications
include vibration control and active shape control of flexible
structures such as plates and trusses [3], with significant
experimental results demonstrating that flexible structural
vibrations can be effectively reduced [4, 5]. Other applica-
tions involve the use of smart materials in unstable systems to
actively monitor and suppress instability in a controlled
manner [6]. Smart structures can also be used for the detection
of cracks and corrosion monitoring [7], while embedded
sensors and actuators can be used to actively control bucking
in a loaded beam [8]. Smart materials are also used in
micromechanics for energy harvesting, which converts energy

from one form to another, such as from mechanical move-
ment into electric energy [9].

The active control of unstable smart structures has been
investigated by Hogg and Huberman [10] using an agent-
based approach to suppress instability. They considered how
to improve control of a given shape in a smart structure and
investigated the possibility of dynamically transitioning
between two configurations of the structure, one of which is
stable and the other unstable. An elastic continuous beam
model with simply supported boundary conditions was also
investigated by Camescasse, Fernandes and Pouget [11, 12]
who used nonlinear theory to investigate the transition
between two stable positions of a buckled beam and snap-
through phenomenon. Yoon and Washington have shown that
deformable structures can be reconfigured through an optimal
method of shape control, and a mechanically deformable
reflector antenna structure was simulated as an application
[13, 14]. Some applications of reconfiguring smart structures
are also emerging to improve the aerodynamic and aeroelastic
performance of aircraft [15]. Recently a new smart structure
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concept for self-folding origami has been presented, which
can fold itself through embedded electronics into a desired
shape [16]. A crawling robot that can fold itself was devel-
oped to demonstrate the application of this technique to the
fabrication of reconfigurable machines [17].

In this paper, previous work by McInnes and Waters [18]
is first summarized. We use dynamical system theory to
investigate the characteristics of their double mass-spring
problem as a simple model of a smart structure. We then
identify a set of both stable and unstable equilibrium con-
figurations in the model and consider reconfiguration of the
smart structure between the equal-energy, unstable states. It is
assumed that active control can maintain the structure in an
unstable state [19]. A reconfigurable smart structure is defined
here as a mechanical system which has the ability to change
its kinematic configuration between a finite set of stable or
unstable equilibria. To achieve such a reconfiguration here we
attempt to connect the unstable equilibria through heteroclinic
connections in the phase space of the problem. Because
unstable equilibria can be found which lie on the same energy
surface in the phase space, if a heteroclinic connection
between unstable, equal-energy equilibria can be defined,
trajectories exist between these configurations which in
principle do not require the addition of or dissipation of
energy. Previous work [18] illustrated that the use of such
heteroclinic connections between unstable equilibria can in
principle be energetically efficient compared to reconfiguring
a structure between stable configurations, which requires the
addition of and then dissipation of energy.

However, it can be difficult to obtain such heteroclinic
connections numerically in complex dynamical systems, such
as those with strong nonlinearity. Therefore, in this paper, a
reconfiguration method which is based on a reference tra-
jectory and an inverse control method which is applied to the
simple double mass-spring model of the smart structure. The
principal advantage of the inverse method for this problem is
the flexibility for path shaping. For example, a sufficiently
smooth set of functions can be used to generate a path to
approximate the heteroclinic connection and satisfy a number
of boundary conditions for the problem. Again, it is envisaged
that being computationally efficient, the method can form the
basis for real-time reconfiguration of smart structures using
heteroclinic connections between equal-energy, unstable
configurations.

The fundamental theory of inverse control is then dis-
cussed and applied to the reconfiguration of the simple model
of a smart structure. It is demonstrated that families of fourth
order polynomials can provide suitable reference functions to
generate a phase space trajectory which approximates the real
heteroclinic connection while satisfying the boundary condi-
tions of the problem.

An evaluation criteria is then defined by again using a
simple spring model, which under quasi-static conditions
provides a relationship between the control action and the
spring deformation required for control, thus developing a
measure of the energy required for control. This evaluation
criteria is then applied to the smart structure reconfiguration
problem in order to assess the relative energy cost of different

reconfiguration methods. We then consider a higher-order
polynomial whose additional free parameters allow an opti-
mization algorithm to be used to minimize the control effort
required for reconfiguration. Some numerical results are then
presented to elaborate on the feasibility of this reconfiguration
manoeuvre. Finally, we extend the method from the double
spring-mass model to a three mass problem which provides a
significant step change in complexity, both in terms of the
number of equilibrium states and in the difficulty of finding a
true heteroclinic connection. However, it is demonstrated that
the polynomial method and inverse control can provide
effective reconfiguration of the structure between equal-
energy unstable equilibria.

2. Smart structure model

In order to investigate how to use a polynomial as an
approximation of a heteroclinic connection to reconfigure a
smart structure, a simple representative model of a structure is
defined [20]. We first assume a beam modeled as a single
lumped mass and two linear springs to simulate the structure’s
stiffness, with both ends clamped, as shown in figure 1. The
parameters of the model are the mass m of the single lumped
mass and the spring stiffness and natural length k and l,
respectively. The distance between the two clamped ends is
2d and the displacement of the mass in the vertical direction is
defined by x. From figure 1 it can be seen that the dynamics of
the model can therefore be described by

x v, 1( )=

mv kx
l

x d
2 1 . 2

2 2
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= - -

+


Equation (2) can be expanded by assuming that x/d=1
to obtain

mv k
l

d
x

kl

d
x2 1 3

3
3 ( )⎜ ⎟⎛

⎝
⎞
⎠= - - - + 

which can be written as

q p, 4( )=

p q q , 53 ( )m= -

Figure 1. One-degree-of-freedom bucking beam model.
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where the non-dimensional position variable q l d x3= / and
non-dimensional time t m kt = / / are defined. The free
parameter μ=2(l/d−1) is used as a measure of the
compressive load acting on the model. Later, we will assume
that the natural length of the spring can be manipulated
through the use of an appropriate material, thus allowing
active control of the structure. A relationship can be therefore
be found between variations of Δμ and variations of the real
spring length Δl, where δ can be defined as the ratio of total
deformation to the initial length of the spring such that

l

l 2
. 6( )d

m
m

=
D

=
D
+

Then, consider that the system is conservative so the pro-
blem also can be understood such that p V q q,( )m= -¶ ¶ /

through the use of an effective potential V(q, μ), defined as

V q q q,
1

2

1

4
72 4( ) ( )m m= - +

so that we can extend the 1 degree-of-freedom problem to a
chain of N masses. Considering that the system is still
conservative we use the same functional form of nonlinearity
as equation (7) above. The potential can then be generalized
to arbitrary pairs of neighboring masses i−1 and i as

V q q q q q q, ,
1

2

1

4
. 8i i i i i i i i1 1

2
1

4( ) ( ) ( ) ( )m m= - - + -- - -

In order to control the dynamics of the problem it will
again be assumed that we can manipulate the coupling
parameters μi to achieve active control of the structure. Since
there is a linear relationship between μi and the natural length
of the spring, we again assume that we can manipulate μi

through changes to the natural length of the spring in the
model. Now the behavior of a chain of masses can be
described by a Hamiltonian H(q, p, μ)=T(p)+V(q, μ) with
the set q={qi}(i=1−N) and the corresponding set of
momenta p={pi}(i=1−N) such that (p, q)äR2N, where
T(p) represents kinetic energy and V(q, μ) represent potential
energy where

p pT
1

2
92( ) ∣∣ ∣∣ ( )=

qV q q q q,
1

2

1

4
10

i

N

i i i i i
1

1

1
2

1
4( ) ( ) ( ) ( )åm m= - - + -

=

+

- -

with boundary conditions q0=0 and qN=0, so that the
chain is pinned at both ends.

In order to explore the possibility of reconfiguring a
smart structure using the approximate polynomial method, a
simple two masses chain with three linear springs will first be
considered with the springs clamped at both ends, as shown in
figure 2. The model assumes that the masses are constrained
to move only in the vertical direction.

The Hamiltonian for this two-mass model can then be
defined from the kinetic energy and potential energy through

the equations (9) and (10) as

p p pT
1

2
, 111

2
2

2( ) ∣ ∣ ∣ ∣ ( )= +

qV q q q q

q q q q

,
1

2

1

2

1

2
1

4

1

4

1

4
. 12

1 1
2

2 1 2
2

3 2
2

1
4

1 2
4

2
4

( ) ( )

( ) ( )

m m m m=- - - -

+ + - +

Now we can fully define the problem by a dynamical
system of the form

q p , 131 1 ( )=

p q q q q q q , 141 1 1 1
3

2 1 2 1 2
3( ) ( ) ( )m m= - + - - -

q p , 152 2 ( )=

p q q q q q q , 162 3 2 2
3

2 1 2 1 2
3( ) ( ) ( )m m= - - - + -

where full details of the development of the simple smart
structure model are provided by McInnes and Waters [18].

3. Approximate heteroclinic connection and control

We note that the system has been simplified by assuming
x d 1./ This approximation is sufficient to provide the
required qualitative behavior of the system through the
equation (3), which is a simple cubic nonlinearity, while
avoiding undue algebraic complexity. It will be shown that
the system defined by equations (13)–(16) has a number of
equilibria which are both stable and unstable and may be
connected through paths in the phase space of the problem.
One type of path is the heteroclinic connection which requires
the stable and unstable manifolds of two unstable equilibria to
be connected. Solving equations (14) and (16) for equilibrium
conditions yields five equilibria for the parameter set, μ1=1,
μ2=1.5 and μ3=1. The location of the equilibria are listed
in table 1. The linear stability of these equilibria can be
determined through linearization of Hamilton’s equations in
the neighborhood of each equilibrium point to determine the
eigenvalues of the equilibria λj(j=1−4). A set of stable
equilibria are expected with conjugate imaginary eigenvalues
and a set of unstable equilibria are expected with real
eigenvalues of opposite sign [21]. It can then be determined
that the two-degree-of-freedom system possesses three

Figure 2. Two-degree-of-freedom bucking beam model.
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unstable equilibria E0, E1, E2 and 2 stable equilibria E3 and E4

shown in figure 3 with contours of potential V.
Since the E1 and E2 lie on the same energy surface, there

may be a heteroclinic connection connecting these equilibria,
as shown in figure 4(a), so that the structure can be reconfi-
gured between these two equilibria without work being done.
Similarly, if the structure is at the stable equilibria E3, it needs
to cross the potential barrier at E1 to transition to the other
stable equilibrium E4, as shown in figure 4(b); however
energy must be added to the system to reach the top of the
barrier and then dissipated to reach the final equilibrium state.

3.1. Constructing the reference polynomial

Although heteroclinic connections are essential characteristic
of nonlinear dynamical systems, it can be difficult to find
exact heteroclinic connections numerically in complex non-
linear dynamical systems. Therefore, a method has been
investigated to approximate heteroclinic connections which
we envisage can form the basis for real-time reconfiguration
of smart structures. The heteroclinic connection will be
defined as a fourth order polynomial, namely

q a a a a at t t t t . 170 1 2
2

3
3

4
4( ) ( )* = + + + +

The unknown vector of constants ai (i=1−4) in the
reference polynomial can then be related to the boundary
conditions of the system.

The ideal heteroclinic connection in figure 4 departs from
equilibrium E1, goes through the global minimum at equili-
brium E4 and ends in equilibrium E2. We can therefore define
conditions on the polynomials which approximate the het-
eroclinic connection, namely

q q q q qT T T0 2 0

1
2 3

1
2 3

1 1
0
0

0
0

. 18

T

( ) ( ) ( ) ( ) ( )

( )

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

* * * * *

=
-

- -

 /

/ /

Then, the only remaining free parameter to define the
reference polynomial is the total reconfiguration duration T.
Therefore, we can obtain an approximate heteroclinic con-
nection defined using equation (18) where the constant vec-
tors of equation (17) are found to be

a a a a a T T

T

T

T

T

1
0

1
0

14 3 50 3

52 3

32 3

76 3

32 3

. 19

T

0 1 2 3 4
2 2

3

4

3

4

[ ] ( )

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

= -

-

-

/ /

/

/

/

/

This function provides a smooth reference trajectory
while ensuring that the required boundary conditions are
satisfied. After repeated differentiation these polynomials
provide the corresponding velocities and accelerations to be
tracked to follow the reference trajectory.

Similarly, the transition from E3 to E4 can also be
defined. We consider that this path should cross the potential
barrier E1, so the boundary conditions are defined as

q q q q qT T T0 2 0

2 3
1

2 3
1

2 3 2 3

0
0

0
0

. 20

T

( ) ( ) ( ) ( ) ( )

( )

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

* * * * *

=

-

-

 /

/ /

/ /

Table 1. Stability properties of the five equilibria of two-degree-of-freedom bucking beam model [10].

Point q̃1 q̃2 λ1,2 λ3,4 V Type

E0 0 0 ±1 ±2 0 Saddle×Saddle
E1 1 1 ± 2 i ±1 −0.5 Saddle×Center
E2 −1 −1 ± 2 i ±1 −0.5 Saddle×Center
E3 −2/3 2/3 ±1 3/ i ±2 2 i −8/9 Center×Center
E4 2/3 −2/3 ±1 3/ i ±2 2 i −8/9 Center×Center

Figure 3. Potential V (q, μ) and equilibria (three unstable equilibria
E0, E1 and E2, and two stable equilibria E3 and E4).
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The constants of equation (17) are therefore defined as:

a a a a a T T

T

T

T

T

2 3
0

2 3
0

20 12

104 3

16

88 3

16

. 21

T

0 1 2 3 4
2 2

3

4

3

4

[ ] ( )

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

=

-

- -

/ /

/ /

/

/

/

/

Now that the reference polynomials have been defined,
an inverse method will be developed in order to track them,
allowing an approximate heteroclinic connection to be
followed.

3.2. Inverse methods

Inverse control allows tracking of time dependent constrains
and is an effective method to control nonlinear systems, used
extensively in a diverse range of nonlinear control problems
[22]. A nonlinear system is assumed to have a generic form of

x x u x ut f t t t R R t T, ; , , , 0, ,

22

m n( ) { ( ) ( ) } [ ]

( )

= Î Î Î

where x(t) is the system state, u(t) is a vector of inputs and f is
a smooth function describing the dynamics of the process.
The generic boundary conditions and constrains are defined
as

x x x xT0 , . 23f0( ) ( ) ( )= =

The inverse method represents the control problem of
how to find a control vector u(t) which can track desired
outputs of the system while meeting the requirements of the
boundary conditions so that

e x x x xt t t t t, ; 0, 24{ } { }( ) ( ) ( ) ( ) ( )* *= - =

where e is a continuous constraint function and x*(t)
represents the desired output. This relationship should be
differentiated repeatedly until the control vector appears
explicitly.

For our dynamical system we need to extend this method
to provide nonlinear control to track the reference trajectory in
the presence of uncertainties. We may differentiate the con-
straint vector e until the control appears explicitly, then we
may add feedback terms instead of defining the constraint
vector to be null so that

e x g e g et x t t, ; , 251 2{ ( ) ( ) } ( )* = - -̈

where g1 and g2 are constant gain matrices given by

g g gDiag , ,1 11 12{ }=

g g gDiag , .2 21 22{ }=

The fourth order polynomial can then be used as a
reference trajectory with the inverse control method to pro-
vide an example of a controlled heteroclinic connection
through E3 between E1 and E2, with μ1=1, μ2=1.5 and
μ3=1 as parameters, and the reconfiguration duration later
set as T=20.

Recall equations (12)–(15), which can be expressed in
matrix form as

q
p

q
p

p

q q q

p

q q q

q q q

q q q

0

0
0

0

0

0
0
0

. 26

1

1

2

2

1

1
3

1 2
3

2

2
3

1 2
3

1 1 2

1 2 2

1

2

3

( )

( )

( )

( )

( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

m
m
m

=
- - -

- + -

+
-

- -






This is now in the form of x x x uf h ,( ) ( )= + which is
an affine system with drift terms, where x is a vector of state
variables and u is a vector of control variables. Feedback
linearization can then be used to transform the original system
model into an equivalent linear model, by algebraically
transforming the nonlinear system into linear dynamics, so
that linear control methods can be applied. Feedback linear-
ization therefore uses exact feedback, while conventional

Figure 4. Transitions between different equilibria. (a) Ideal heteroclinic connection through E3 or E4 between E1 and E2, (b) crossing the
potential barrier E1 between E3 and E4.
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(Jacobian) linearization is a linear approximation of the actual
nonlinear dynamics [23, 24].

We can rewrite equation (26) in a simpler form:

q
q q q

q q q
J x

q q q

q q q

q q q

q q q0
0 . 27

1
3

1 2
3

2
3

1 2
3

1
3

1 2
3

2
3

1 2
3

1 1 2

1 2 2

1

2

3

[ ] ( )

( )
( )

( )

( )

( )
( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

m

m
m
m

=
- - -

- + -
+

=
- - -

- + -

+
-

- -

̈

The invertibility matrix: J(x) has rank 2 when there are
two values not equal to zero among the three variables q1, q2
and q1−q2. From section 3.1, the control system will then
have four null points, when q1−q2=0 and q1=0 and
q2=0. Therefore, the three control parameters can be chosen
to avoid singularities, for example when q1 vanishes, the
corresponding value of μ1 will be unbound, so we can then
select μ2 and μ3 as the control parameters with a constant
value of μ1. The system is therefore controllable with two
state variables and two control variables. In this way, the
natural length of the spring can be used as the control
(assumed through an appropriate smart material) and so the
control parameters which can be used to track the reference
trajectory are given by

qJ x
q q q

q q q
. 281 1

3
1 2

3

2
3

1 2
3

( )
( )

( )
( )

⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟m = -

- - -

- + -
- ̈

In this paper we formulate a boundary value for the
critical region of possible control. A simple algorithm is used
to determine the singular states and then provide a new set of
control variables. Here, δ, which is defined in section 2, is
used as an evaluation index to achieve control. Although μ is
the nominal control vector, the real situation should be con-
sidered: the spring is elastic but within limits. Therefore the
real deformation δ is defined to be no more than 25% to
approximate a realistic system. Therefore, when δ2 is more
than ,d̄ where d̄ corresponds to a deformation of 25%, as
defined through equation (6), μ1 and μ3 are chosen as the
control variables with fixed μ2; when δ1 is more than ,d̄ μ2

and μ3 are chosen as the control variables with fixed μ1; when
δ3 is more than ,d̄ μ1 and μ2 are chosen as the control vari-
ables with fixed μ3, with equation (28) providing the control
variables μ1, μ2 and μ3, where δ1, δ2 and δ3 represent the
deformation ratio of real springs corresponding to μ1, μ2 and
μ3, respectively.

Using equations (24) and (25), the constraint can then be
modified as

e q q , 29( )*= -

e q q , 30( )*= -  

e q q g e g e. 311 2 ( )*= - = - -̈ ̈ ̈

In order to ensure convergence to the desired output q* a
Lyapunov function will be defined as

q q q q g q q q q

q q

,
1

2

1

2
, 32

T T
2( ) ( )

( )
( ) ( )

( )

* * *

*

f = - - + -

´ -

  

 

where q q, 0( )f > and q q, 0( )* *f = for g2>0. The time
derivative of the Lyapunov function is clearly

q q q q g q q q q

q q e g e e e

,

. 33T T

T T
2

2

( ) ( ) ( )
( )

( )
( )

* * *

*

f = - - + -

´ - = +

    

 



̈ ̈ ̈

Substituting equation (31) into equation (33) we obtain
the expression of the time derivative of the Lyapunov func-
tion. It can be seen that f is monotonically decreasing cor-
responding to g1>0 and g2>0 such that

q q e g e e g e g e e g e, 0, 34T T T
2 1 2 1( ) ( ) ( )f = + - - = -     

where again g1 and g2 are the gain matrix. It is then clear that
the required acceleration is given by

q q g q q g q q , 351 1 11 1 1 12 1 1( ) ( )̈ ̈ ( )* * *= - - - - 

q q g q q g q q . 362 2 21 2 2 22 2 2( ) ( )̈ ̈ ( )* * *= - - - - 

Through intermediate variables q1̈ and q ,2̈ the inverse
control method can be connected to the system dynamics.
That is, equations (35) and (36) are used as feedback to
control the dynamics of the system defined by equations (13)–
(16). The system dynamics are therefore artificially linearized
about the nominal reference trajectory so that the control
variables can then be determined from equation (28) as

J x
q

q

q g q

q g q

g q q q q q

g q q q q q
. 37

1 11 1

21 2

1 11 1

2 21 2

12 1 1 1
3

1 2
3

22 2 2 2
3

1 2
3

( )
( )

( )
̈
̈

( )

( )
( )

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟

* *

* *

*

*

m
l
l

=
-
-

+
+
+

- - + + -

- - + - -

- 





This provides a composite control which ensures con-
vergence to the desired reference trajectory while avoiding

Figure 5. Composite feedback linearization control scheme.
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control singularities, as shown in figure 5. Equation (37)
provides a distinct relationship between the control variables
μ and the state variables q, so the state variables q form the
control variables μ along with the reference trajectory q*. For
a practical implementation the actuator band width and

measurement noise needed to be considered; however, this
ideal smart structure model just focuses on the mathematical
theory and control manoeuvre. Therefore, for future applica-
tion, more details about the actuator and sensor need elaborate
consideration.

Figure 6. Control effort evaluation criteria using a simple spring model. The shaded block represents smart material element with internal
stiffness. (a) Element under external load F. (b) Element attached to external spring (adapted from [23]).

Figure 7. Fourth-order polynomial as reference trajectory from E1 at (1, 1) to E2 at (−1, −1). (a) Controlled transition, (b) geometry of
transition process, (c) controls actuated through the parameters μ1, μ2 and μ3, (d) mass displacements during the transition from E1 to E2 with
the reference trajectory and actual trajectory.
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3.3. Energy evaluation criteria

In order to control the reconfiguration of the model smart
structure we have implicitly assumed that the natural length
of the springs can be modulated through the parameter set
μ1, μ2 and μ3 (again, assuming use of an appropriate smart
material, such as shape-memory alloys which can be
deformed when heated). In order to estimate the energy
requirements for such modulation we provide a simplified
description of the spring actuator [25], as presented in
figure 6. Two performance parameters should be considered
in the model, one is the basic property of the smart material,
the induced-strain effect, denoted by ds in figure 6; the other
is the internal stiffness, ks, again shown in figure 6. Due to
spring compressibility, an elastic displacement F/ks can be
produced by the load F. The spring can actuate the induced-
strain displacement, ds, to increase or decrease the output
displacement de, as shown in figure 6(a), where de is

Figure 8. Fourth-order polynomial reference trajectory as reference trajectory from E3 at (−2/3, 2/3) to E4 at (2/3, −2/3). (a) Controlled
transition, (b) geometry of transition process, (c) controls actuated through the parameters μ1, μ2 and μ3, (d) mass displacements during the
transition from E3 to E4 with the reference trajectory and actual trajectory.

Figure 9. Comparison of energy input for different reconfigurations.
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given as

d d
F

k
. 38e s

s
( )= -

Now the external load, F, is considered as a product of an
external spring with same stiffness ks, as shown in figure 6(b),
thus

F k d . 39s e ( )=

Combining equations (38) and (39), the relationship between
de and ds can be found as

d d2 . 40s e ( )=

Under quasi-static conditions, the output energy is then half
the product between the force and the output displacement,
i.e.

E k d
1

2
. 41s e

2 ( )=

Substituting equation (40) into equation (41) we obtain
the expression for input energy in terms of induced strain, as

E k d
1

2

1

4
. 42s s

2 ( )⎜ ⎟⎛
⎝

⎞
⎠=

Now we consider the relationship between the energy
input and control action more specifically. Through the above
analysis, and from section 2, we can use the control variable
μ=2(l/d−1) to obtain

l d 2 . 43( ) ( )mD = D/

Consider that Δl and ds have the same significance in the
spring model so that equation (41) may be written as

E k d k
d

k d

1

2

1

4

1

2

1

4 2

1

32
, 44

s s
2

s

2
2

s
2 2 2 ( )

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟m

m m

= = D

= D µ D

where ks, d are constants. Using equation (44) we now have a
simple means of comparting the energy requirements to track
the reference polynomial trajectory between equilibrium
states of the smart structure model.

Figure 10. Sixth-order polynomial as reference trajectory from E1 at (1, 1) to E2 at (−1, −1). (a) Controlled transition, (b) controls actuated
through the parameters μ1, μ2 and μ3.

Figure 11. Comparison of energy input to track different
approximate trajectories.
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3.4. Numerical solutions

The method defined in section 3.2 will now be applied to
illustrate two reconfiguration manoeuvres and the use of the
inverse method to achieve effective control. The inverse
method will be used to reconfigure the two-degree-of-free-
dom beam model with a fourth-order polynomial to approx-
imate the ideal heteroclinic connection through E3 between E1

and E2 .The approximate heteroclinic connection can be seen
in figure 7(a), where the controller tracks the approximate
trajectory defined by the fourth-order polynomial, with the
constant gains defined as g11=g21=0.25 and
g12=g22=0.75 and the reconfiguration duration T=20.
The corresponding shape of the structure during the transition
from E1 to E2 is shown in figure 7(b). The labels in figure 7(b)
illustrate the transition process corresponding to the positions
marked in figure 7(a). The corresponding controls μ1, μ2 and

μ3 are shown in figure 7(c), where it can be seen that the
controls are symmetric about t=T/2 as expected. The con-
trols here are scaled variables, so that although the maximum
relative change shown in the figure 7(c) is more than 50%, the
ratio of the corresponding real spring deformation is only
18%, which is calculated by equation (6), and is less than .d̄
There are sudden jumps in figure 7(c) which correspond to the
switching control strategy discussed in section 3.2.

The corresponding mass displacement and the reference
path are then shown in figure 7(d).

We now consider the inverse method to reconfigure the
two-degree-of-freedom beam model with the fourth-order
polynomial to approximate a transition crossing the potential
barrier E1 between E3 and E4. The approximate path can be
seen in figure 8(a) and the corresponding shape of the
structure during the transition from E3 to E4 is shown in
figure 8(b). The corresponding controls μ1, μ2 and μ3 are

Figure 12. Eighth-order polynomials as reference trajectory from E1 at (1, 1) to E2 at (−1, −1). (a) Controlled transition, (b) geometry of
transition process, (c) controls actuated through the parameters μ1, μ2 and μ3, (d) mass displacements during the transition from E1 to E2 with
reference trajectory and actual trajectory.
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shown in figure 8(c) and the corresponding mass displace-
ment and the reference path shown in figure 8(d).

We now use the evaluation criteria discussed in
section 3.3 to investigate the energy requirements of the
transitions of the simple smart structure model. For example,
the energy requirement needed to overcome the potential
barrier at equilibrium E1 is clearly greater than that passing
through E3, as shown in figure 9. The energy for transitions

through E1 is of order 25% higher than that for transitions
through E3, as expected.

3.5. Extending the order of the polynomial

In order to evaluate the polynomial method further, a set of
higher-order polynomials can be used which can reduce the
effective energy required for reconfiguration. We can there-
fore add additional boundary conditions to construct a higher-
order reference polynomial. Considering the transition from
E1 at (1, 1) to E2 at (−1, −1) as an example we define

q q T0 0 0
0 0

. 45( ) ( ) ( )⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥* * =̈ ̈

Then, the only remaining free parameter to define the
reference polynomial is again the total reconfiguration dura-
tion T. We can therefore obtain an approximate heteroclinic
connection defined using

q a a a a a a at t t t t t t .

46

0 1 2
2

3
3

4
4

5
5

6
6( )

( )

* = + + + + + +

Using the inverse control method we can generate
another approximate heteroclinic connection as shown in
figure 10(a), where the controller tracks the approximate
trajectory defined by the sixth-order polynomial. The corre-
sponding controls μ1, μ2 and μ3 are shown in figure 10(b).

Then, we can use the energy evaluation criteria in order
to track the approximate trajectory through E3, where the total
energy input to the process can be seen in figure 11. The
numerical results demonstrate that with the higher-order
polynomial less energy is required for the reconfiguration
process.

We now add additional target waypoints so that we can
use these points to construct a more accurate polynomial to
approximate the exact heteroclinic connection. Here, we will
use the energy evaluation criteria and an optimization algo-
rithm to find the location of these waypoints to minimize the
total energy required. Additional variables will be added
based on equation (46), as shown in equation (47) so that

q a a a a a a

a a a

t t t t t t

t t t . 47

0 1 2
2

3
3

4
4

5
5

6
6

7
7

8
8

( )
( )

* = + + + + +

+ + +

It is difficult to add additional constant a7 and a8 from
simple geometric considerations. However, two time points
T/4 and 3T/4 (where T is again the reconfiguration duration)
are selected as fixed waypoints. Then, the location of the two
target waypoints are chosen by using an optimization algo-
rithm. Therefore, an eighth-order polynomial can be defined
as the reference trajectory and we use the fmincon function in
Matlab, which is a nonlinear multivariable optimizer which
can find the minimum of a constrained function [26]. We
would envisage using a simple numerical search algorithm to
optimize the waypoint location in a real smart structure using
heteroclinic connections. Using the optimization algorithm,

Figure 13. Comparison of energy input to track different
approximate trajectories with varying polynomial degree.

Figure 14. Energy required for reconfiguration as a function of
reconfiguration duration.

Figure 15. Three-degree-of-freedom bucking beam model.
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the improved numerical results can be seen in figure 12(a),
showing the heteroclinic connection approximated with an
eighth-order polynomial where the constant gain matrices are
again g11=g21=0.25, g12=g22=0.75. Figure 12(b)
illustrates the corresponding shape of the structure during the
transition from E1 to E2 and the corresponding controls μ1, μ2

are μ3 are shown in figure 12(c). It can be seen that the
controls are again symmetric about t=T/2. The corre-
sponding mass displacement and the reference path is shown
in figure 12(d).

The energy evaluation criteria can then be used to
measure the total energy required for the reconfiguration
process, as can be seen in figure 13. From figure 13 it can
be seen that the initial assumptions on the order of the
polynomial which is used to approximate the heteroclinic
connection are key. We can use a higher-order polynomial
as a reference trajectory to reconfigure structure with sig-
nificantly less energy input, but requiring a numerical
search for optimization.

Now, we will consider the influence of the total recon-
figuration duration T, which is the only remaining free para-
meter to define the reference polynomials. Using the same
energy evaluation criteria we can find the relationship
between total reconfiguration duration and the energy
requirements. Figure 14 shows five distinct curves which
define five types of reference trajectory with different man-
oeuvre durations considered. There is an evident sharp
decrease to an optimum, minimum energy duration and then a
slow increase as the manoeuvre duration grows. For this
example we can therefore identify the optimum manoeuvre
duration T. It can again be seen that the transition through E1

needs more energy than the transition through E3 with the
same order polynomial and the same manoeuvre duration as
expected. This demonstrates that the higher-order polynomial
can significantly improve the reference trajectory for recon-
figuring the smart structure model.

Table 2. Stability properties of the 27 equilibria of a three-mass chain with μ1=1, μ2=1.5, μ3=1.5 and μ4=1. (S—Saddle, C—Center).

Point q1̃ q2˜ q3˜ λ1,2 λ3,4 λ5,6 V Type

E0 0 0 0 ±0.784 ±2.210 ±1.581 0 S×S×S
E1 1 1 1 ±2 ±0.707i ±1.225i −0.5 S×C×C
E2 −1 −1 −1 ±2 ±0.707i ±1.225i −0.5 S×C×C
E3 0 6 2/ 0 ±0.831 ±2.948i ±1.414i −1.125 S×C×C
E4 0 − 6 2/ 0 ±0.831 ±2.948i ±1.414i −1.125 S×C×C
E5 1 6 2 1+/ 1 ±3.126i ±1.108i ±2.236i −1.625 C×C×C
E6 1 1 6 2- / 1 ±3.126i ±1.108i ±2.236i −1.625 C×C×C
E7 −1 6 2 1- -/ −1 ±3.126i ±1.108i ±2.236i −1.625 C×C×C
E8 −1 6 2 1-/ −1 ±3.126i ±1.108i ±2.236i −1.625 C×C×C
E9 5 2/ 0 − 5 2/ ±2.818i ±1.248i ±2.236i −1.563 C×C×C
E10 − 5 2/ 0 5 2/ ±2.818i ±1.248i ±2.236i −1.563 C×C ×C
E11 5 1 4( )+ / 1 1 5 4( )- / ±2.525i ±0.487i ±1.365 −0.844 S×C×C
E12 1 5 4( )- / 1 5 1 4( )+ / ±2.525i ±0.487i ±1.365 −0.844 S×C×C
E13 5 1 4( )- / −1 5 1 4( )- + / ±2.525i ±0.487i ±1.365 −0.844 S×C×C
E14 5 1 4( )- + / −1 5 1 4( )- / ±2.525i ±0.487i ±1.365 −0.844 S×C×C
E15 5 1 4( )+ / −0.5 1 5 4( )- / ±2.707i ±0.376i ±1.648 −0.844 S×C×C
E16 1 5 4( )- / −0.5 5 1 4( )+ / ±2.707i ±0.376i ±1.648 −0.844 S×C×C
E17 5 1 4( )- + / 0.5 5 1 4( )- / ±2.707i ±0.376i ±1.648 −0.844 S×C×C
E18 5 1 4( )- / 0.5 5 1 4( )- + / ±2.707i ±0.376i ±1.648 −0.844 S×C×C
E19 14 7- / 3 14 14/ 14 7/ ±2.669i ±0.308 ±1.474 −0.844 S×S×C
E20 14 7/ 3 14 14/ 14 7- / ±2.669i ±0.308 ±1.474 −0.844 S×S×C
E21 14 7- / 3 14 14- / 14 7/ ±2.669i ±0.308 ±1.474 −0.844 S×S×C
E22 14 7/ 3 14 14- / 14 7- / ±2.669i ±0.308 ±1.474 −0.844 S×S×C
E23 0.61914 0.88641 1.15367 ±0.734 ±1.888 ±1.450i −0.482 S×S×C
E24 −0.61914 −0.88641 −1.15367 ±0.734 ±1.888 ±1.450i −0.482 S×S×C
E25 1.15367 0.88641 0.61914 ±0.734 ±1.888 ±1.450i −0.482 S×S×C
E26 −1.15367 −0.88641 −0.61914 ±0.734 ±1.888 ±1.450i −0.482 S×S×C

Figure 16. A total of 27 equilibria (21 unstable equilibria and 6
stable equilibria)
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4. Three-mass chain

4.1. Three-mass chain model

In order to further explore the possibility of reconfiguring
smart structures using reference polynomials, a more complex
three-mass chain with four linear springs will now be con-
sidered, with the springs clamped at both ends as shown in
figure 15. This more complex problem greatly increases the
number of equilibria in the system and the difficulty of
finding an exact heteroclinic connection by purely numerical
means. The dynamics of the chain are first obtained from
equations (2) and (3) as

q p , 481 1 ( )=

p q q q q q q , 491 1 1 1
3

2 1 2 1 2
3( ) ( ) ( )m m= - + - - -

q p , 502 2 ( )=

p q q q q

q q q q , 51
2 3 2 3 2 3

3

2 1 2 1 2
3

( ) ( )
( ) ( ) ( )

m

m

= - - -

- - + -



q p , 523 3 ( )=

p q q q q q q . 533 4 3 3
3

3 2 3 2 3
3( ) ( ) ( )m m= - - - + -

Solving equations (48)–(53) for equilibria, the location of
the equilibria can be found as shown in table 2 for the
parameter set, μ1=1, μ2=1.5, μ3=1.5 and μ4=1 along
with the eigenvalue spectrum associated with each equili-
brium, as discussed in section 3. It can be seen from table 2
that the system possesses the unstable equilibrium E0, where
the potential has a global maximum; 20 unstable equilibria
where the potential has several saddles, and 6 stable equilibria
where the potential has a local minimum. The location of
these equilibria and potential surfaces can be seen in
figures 16 and 17, respectively.

4.2. Numerical solution

We first use the fourth-order polynomial to approximate a
heteroclinic connection through E10 between E12 and E13. We
can therefore define conditions on the polynomial which

Figure 17. Potential contour with Saddles. (a) Potential −0.5 with E1 and E2, (b) potential −0.482 with E23 to E26, (c) potential −1.125 with
E3 and E4, (d) potential −0.844 with E11 and E22.
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approximate the heteroclinic connection, namely

q q q q qT T T0 2 0

0.309
1.118

1
0

0.809
1.118

0.809 1 0.309
0
0

0
0

0
0

. 54

T

( ) ( ) ( ) ( ) ( )

( )

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

* * * * *

=

-
-
- -

 /

The manoeuvre duration is again set as T=20 and the
constant gains are defined as g11=g21=0.25, g12=g22=
0.75. The approximate heteroclinic connection can be seen in
figure 18(a), where the controller tracks the approximate tra-
jectory defined by the fourth-order polynomials. The corre-
sponding shape of the structure during the transition from E12 to
E13 is shown in figure 18(b). The labels in figure 18(b) present
the transition process corresponding to the positions marked in
figure 18(a), while the corresponding controls μ1, μ2, μ3 and μ4

are shown in figure 18(c). The corresponding mass displace-
ments and the reference path is shown in figure 18(d).

Then, the method discussed in section 3.5 is used to con-
struct an eighth-order polynomial with the additional conditions

q q T0
0 0
0 0
0 0

. 55( ) ( ) ( )⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥* * =̈ ̈

Moreover, using the optimization algorithm, figure 19(a)
shows the heteroclinic connection approximated with the
eighth-order polynomial, where the gains are
g11=g21=0.25, g12=g22=0.75. Figure 19(b) illustrates
the corresponding shape of the structure during the transition
from E12 to E13 and the corresponding controls μ1, μ2, μ3 and
μ4 are shown in figure 19(c). It can be seen that the controls
are again symmetric about t=T/2 as expected. The corre-
sponding mass displacement and the reference path is shown
in figure 19(d).

Figure 18. Fourth-order polynomials as reference trajectory from unstable equilibrium E12 to unstable equilibrium E13 (a) controlled
transition, (b) geometry of transition process, (c) controls actuated through parameters μ1, μ2, μ3 and μ4, (d) mass displacements during the
transition from E12 to E13 with the reference trajectories.
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Figure 19. Eighth-order polynomials as reference trajectory from unstable equilibrium E12 to unstable equilibrium E13. (a) Controlled
transition, (b) geometry of transition process, (c) controls actuated through the coupling parameter μ1, μ2, μ3 and μ4, (d) mass displacements
during the transition from E12 to E13 with the reference trajectories.

Figure 20. Comparison of energy input to track different
approximate trajectories.

Figure 21. Comparison of energy to track different approximate
trajectories.

15

Smart Mater. Struct. 24 (2015) 105034 J Zhang and C R McInnes



The energy evaluation criteria can then be used to mea-
sure the total energy input to control the reconfiguration
process, as can be seen in figure 20, with the fourth-order
polynomials indicated as the solid line, and the eighth-order
polynomials indicated as the dash line. From figure 20 it can
be seen that a higher-order polynomial can be used as a
reference trajectory to reconfigure the three-mass chain with
significantly less energy input.

Figure 21 shows three distinct curves which define three types
of different order reference trajectory with different manoeuvre
durations. Again, there is an evident decrease to a minimum
energy duration and then an increase as the manoeuvre duration
grows similarly to the two-mass problem, again as expected.

5. Conclusions

A new concept for the reconfiguration of smart structures using
polynomial series to approximate phase space connections has
been presented. As an application for the method, a simple two
mass model is firstly investigated and then a relatively complex
three-mass model used to verify that polynomial series can
offer efficient reference trajectories between unstable equili-
bria. In addition, inverse control methods have been investi-
gated to control the model for reconfiguration from one
equilibrium state to another. Then an energy evaluation criteria
has been employed to determine the performance of the dif-
ferent reference trajectories used and demonstrate that more
efficient and accurate reference trajectories can be expressed by
higher-order polynomials. While the models used in the paper
are relatively simple, they provide an approach to provide
insights into low energy reconfiguration which can be extended
to achieve reconfiguration of real smart structures.
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