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A reconfigurable smart surface with multiple
equilibria is presented, modelled using discrete point
masses and linear springs with geometric nonlinearity.
An energy-efficient reconfiguration scheme is then
investigated to connect equal-energy unstable (but
actively controlled) equilibria. In principle, zero
net energy input is required to transition the surface
between these unstable states, compared to transitions
between stable equilibria across a potential barrier.
These transitions between equal-energy unstable
states, therefore, form heteroclinic connections in
the phase space of the problem. Moreover, the smart
surface model developed can be considered as a
unit module for a range of applications, including
modules which can aggregate together to form larger
distributed smart surface systems.

1. Introduction
Many structures are designed with multi-stable charac-
teristic for use in adaptive applications, such as
compliant mechanisms. These structures have a number
of advantages compared to conventional mechanisms,
such as reducing the number of components required [1].
In particular, compliant mechanisms can use stored strain
energy to enable motion from one stable position to
another stable position [2]. The nonlinear deformation
behaviour of such mechanisms has attracted significant
interest with supporting experiment results [3]. Moreover,
unstable equilibria could also be connected through
heteroclinic connections in the phase space of the
problem. Active control could be used to maintain
the structure in unstable states, so that a transition
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between unstable configurations could be, in principle, found [4,5]. Transitions between equal-
energy unstable states across a potential well are likely to be more efficient than transitions
between stable states across a potential barrier. Meanwhile, the development of novel smart
materials has helped to accelerate the implementation of practical adaptive structures, whose
properties are controlled by external stimuli such as moisture, temperature, electric or magnetic
fields [6,7]. A large number of smart materials with various characteristics, such as shape memory
alloys (SMAs), temperature-responsive polymers and piezoelectric materials can, in principle, be
used to fabricate such smart structures [8–10].

The increasingly broad application of smart structures can be found in many fields, such
as the aerospace, energy and marine sectors, particularly for adaptive optics, vibration control
and flow control [11]. Numerous engineering applications have also been investigated to use
smart surfaces. For example, a reconfigurable reflector for a telecommunication satellite antenna
has been investigated, providing significant advantages over conventional static antennae [12].
‘HoverMesh’, a deformable structural mesh, has been developed as a spatial user interface.
It has a cubical geometry with the upper wall designed as a deformable mesh of inflatable
cells [13]. ‘Smart skin’ is a flexible, stretchable and multifunctional surface which is fabricated
from distributed sensing elements and electrodes. It has been applied in robotics and bionics
and demonstrates excellent utility [14]. Moreover, some biomimetic concepts are derived from
natural phenomenon, for example, deployable membranes designed from folding tree leaves.
New fold patterns were developed for applications to engineered structures by considering the
folding of natural structures [15]. An SMA assembly has also been developed as a mesh structure,
which is attached to an inflatable boom. The smart mesh structure can then be used to control
wrinkling and the deformed configuration of the inflatable boom structure [16]. A single sheet
can be reconfigured to a range of desired shapes through multiple controllers and optimized
design [17].

Furthermore, advanced applications have been considered by connecting smart surface units
in order to enable additional states of the system. A compound surface has been developed
to investigate higher order multi-stability through numerical simulation and experiment [18].
Others have designed materials that can alter their bulk shape through active control by
the deformation of compliant elements. Such materials are best suited to high-precision
applications that benefit from materials that can achieve a desired bulk surface profile rapidly
and efficiently [19]. Moreover, deformable surfaces have been widely investigated in different
concepts, such as morphing composites and multifunctional origami. Some optimized shape
and stacking sequence fibre-reinforced polymer shells have been developed to enhance their
in-plane properties [20]. Meanwhile, the elastic instabilities of shells have also been studied to
design geometries for modifying and controlling post-buckling behaviour of the structure [21].
A new passive honeycomb has been designed as a cellular structure, which is quite different
to normal honeycomb structures. Based on an in-plane negative Poisson’s ratio behaviour, a
wing box filled with such a honeycomb has the ability to change the shape of an aerofoil [22].
The concept of using Poisson’s ratio has been applied to the design of a Kirigami structure
made of composite materials. Numerical and experimental results demonstrate such Kirigami
cellular structures can easily implement shape-changing behaviour based on their changeable
deformation characteristics [23]. Other work is based on a negative Poisson’s ratio, which uses
a folded shell to produce Miura-ori fold patterns. Based on the kinematics of the folding, the
structure can obtain the ability to perform planar deformations and bending. These folded
shells have then been stacked together as Miura layers to produce a more complex three-
dimensional deployable structure which can have varying characteristics specific to different
stacked configurations of the layers [24]. In addition, a double corrugation walled structure
has been designed to offer an excellent ratio between bending and axial stiffness, which is the
capability of concurrently carrying bending and shear loads for morphing skins [25]. Other
smart surface work aims to develop a micro-scale system for conveying, sorting and positioning
micro-parts. Such a smart surface is designed through distributed cells, which contain sensors,
processing units and actuators [26].
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In previous related work, McInnes & Waters [27] investigated a simple smart structure model,
which comprised a two-mass chain with three springs. The model was then approximated
to provide a simple cubic nonlinearity to investigate its characteristics using dynamical
system theory. A set of stable and unstable equilibrium configurations were found, with
transitions between the equal-energy unstable equilibria identified as heteroclinic connections.
This cubic model was considered as a simple mechanical system with the ability to
change its kinematic configuration between a finite set of unstable equilibria. The model
was also used to investigate vibrational energy harvesting through the use of stochastic
resonance [28].

In principle, such transitions between equal-energy unstable states can be achieved without
energy input, in the absence of dissipation. Indeed simulation results show that reconfiguration
between such unstable equilibria can be energetically more efficient compared with transitions
between stable configurations, which need to cross a potential barrier. Moreover, a novel method
has been investigated to plan and control such transitions based on a polynomial reference
trajectory and an inverse control method. It is envisaged that being computationally efficient,
the control strategy could form the basis of real-time reconfiguration of smart structures [29].
Then, a more complex and realistic spring-mass model has been developed to better represent
a more realistic smart structure system [30,31]. Again, a set of equilibria can be found which in
principle can be connected with heteroclinic paths in the phase space of the problem. Strategies
have also been considered to deal with energy dissipation using a range of control methods. The
concept of heteroclinic connections between equal-energy unstable states has also been applied
to reconfigure a linked bar mechanism [32].

In this paper, heteroclinic connections are investigated as a means to reconfigure a simple
discrete model of a smart surface structure, which is similar to the Hencky-type discrete model for
pantographic structures. However, the work in this paper analyses the vertical deformation and
so is quite different to the Hencky-type discrete model, which focuses on planar deformation [33].
In §2, the surface structure is considered as an elastic plane which has a range of both stable
and unstable configurations. As an approximation, the surface is modelled as a two-dimensional
spring-mass array without dissipation and with a simplifying cubic nonlinearity to allow an
investigation of its characteristics using dynamical system theory. Firstly, §3 discusses each
spring-mass element, considered as a cubic nonlinearity between different nodes, and then an
adjacency matrix is used to assemble elements together. Therefore, both stable and unstable
equilibrium configurations can be identified in the model, so that the reconfiguration of the
smart surface can be considered between the equal-energy unstable states, as presented in §4.
It is assumed that the simple reconfigurable structure possesses embedded sensors and actuators
to allow the unstable equilibria to be actively controlled. Meanwhile, a feedback control law is
proposed that can stabilize the dynamics of the smart surface in §5. This control strategy can
actively maintain the structure in an unstable configuration. Section 6 presents more complex
dynamics of such surface structures, which can be formed from an assembly of modules. For
example, each surface module can be regarded as a microsystem unit for conveying, sorting and
positioning micro-parts.

2. Smart surface model
The smart surface structure consists of a two-dimensional array of connected springs and
masses. Consider firstly a simple elastic model, with an array of masses connected as chains
by linear springs of stiffness k and natural length L. In order to proceed, it is assumed that the
masses can only move in the vertical (out-of-plane) direction without damping. The out-of-plane
displacement of mass m is defined by displacement x, while each mass is separated by a fixed
distance d. Consider a simple spring-mass element, which is the basic unit of the smart surface
model. Based on the previous discussion, it is assumed that the masses can only move in the
vertical direction as shown in figure 1.
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Figure 1. Spring-mass element.

To proceed, T is defined as the internal tension in a single spring, so that the tension of the
spring can be described by

T = � · k, (2.1)

where � is the extension of the spring length beyond its natural length, which can be described by

� =
√

(xi−1 − xi)
2 + d2 − L. (2.2)

Therefore, the force experienced by each node can be written as

fi,1 = −� · k · (xi−1 − xi)√
(xi−1 − xi)

2 + d2
= −k(xi−1, − xi)

⎛
⎝1 − l0√

(xi−1 − xi)
2 + d2

⎞
⎠ . (2.3)

The dynamics of each mass in a one-dimensional chain are then described by

mẍi,1 = −k(xi−1 − xi)

⎛
⎝1 − l0√

(xi−1 − xi)
2 + d2

⎞
⎠ . (2.4)

The nonlinear term can be expanded by assuming x/d � 1 to simplify the full nonlinearity of
the problem. It can then be shown that

mẍi = −k
(

l0
d

− 1
)

(xi−1 − xi) + kl0
2d3 (xi−1 − xi)

3 + · · · (2.5)

Following McInnes & Waters [27], a non-dimensional position coordinate q =
√

l0/2d3x and
non-dimensional time τ = t/

√
m/k can be defined with μ = (l0/d − 1) so that

q̈i = −μ(qi−1 − qi) + (qi−1 − qi)
3. (2.6)

To illustrate the smart surface model directly, a simple surface is considered as the structure
shown in figure 2. The location of each mass as a row and column can be defined as u and
v, respectively. Each mass mi,j can then be located on the ith row and jth column, which is
connected to its neighbours by linear springs. The dynamics of mass mi,j are then driven by the
displacements of mi−1,j, mi+1,j, mi,j−1 andmi,j+1. The dynamics of mass mi,j is therefore defined by

q̈i,j = −μ(qi−1,j − qi,j) + (qi−1,j − qi,j)
3 + μ(qi,j − qi+1,j) − (qi,j − qi+1,j)

3

− μ(qi,j−1 − qi,j) + (qi,j−1 − qi,j)
3 + μ(qi,j − qi,j+1) − (qi,j − qi,j+1)3. (2.7)

Owing to the fixed boundary conditions of the problem, the surface model can be considered
as a four degree-of-freedom system, which considers only vertical mass displacements. The
displacement of the boundary nodes can be set to zero, i.e. q0,0 = q0,1 = q0,2 = q0,3 = q1,0 = q1,3 =
q2,0 = q2,3 = q3,0 = q3,1 = q3,2 = q3,3 = 0. The dynamics of the full, coupled system can therefore be
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Figure 2. A simple surface model with fixed boundary condition. (Online version in colour.)

written as⎡
⎢⎢⎢⎣

q̈1,1
q̈1,2
q̈2,1
q̈2,2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

4μq1,1 − μ(q2,1 + q1,2)
4μq1,2 − μ(q2,2 + q1,2)
4μq2,1 − μ(q1,1 + q1,2)
4μq2,2 − μ(q1,2 + q1,2)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

−2q1,1
3 − (q1,1 − q2,1)3 + (q1,1 − q1,2)3

−2q1,2
3 − (q1,2 − q2,2)3 + (q1,1 − q1,2)3

−2q2,1
3 + (q1,1 − q2,1)3 + (q2,1 − q2,2)3

−2q2,2
3 + (q1,2 − q2,2)3 + (q2,1 − q2,2)3

⎤
⎥⎥⎥⎦ . (2.8)

This four degree-of-freedom system is easily formed from the dynamics of the problem
through using equation (2.7). Moreover, the system is constructed from two parts, a linear
destabilizing force term and nonlinear stabilizing force term. It can be expected that the linear
and cubic terms will yield families of both stable and unstable equilibria.

3. General methods
We now consider a general method with an n × n array of masses using the same functional
form of the nonlinearity above. It is again assumed that the system is considered conservative
without dissipation. The adjacency matrix of the graph connecting the nodes can now be used
to form the generalized position of each node. The four degree-of-freedom system above is
firstly employed to illustrate this general method. Since the system detailed above is considered
conservative without dissipation, its behaviour can be described through the use of an effective
potential V(q, μ) by the position set coordinate q = {qi,j}(i = 1 − n, j = 1 − n) such that the momenta
p = {pi,j}(i = 1 − n, j = 1 − n) can be obtained from ṗi,j = −∂V(q, μ)/∂qi,j. The effective potential
V(q, μ) can then be defined as

V(q, μ) = −μq2
1,1 − μq2

1,2 − μq2
2,1 − μq2

2,2 − 1
2 μ(q1,1 − q2,1)2 − 1

2 μ(q1,1 − q1,2)2

− 1
2 μ(q1,2 − q2,2)2 − 1

2 μ(q2,1 − q2,2)2 + 1
2 q4

1,1 + 1
2 q4

1,2 + 1
2 q4

2,1 + 1
2 q4

2,2

− 1
2 q4

2,2 + 1
4 (q1,1 − q2,1)4 + 1

4 (q1,1 − q1,2)4 + 1
4 (q2,2 − q1,2)4 + 1

4 (q2,2 − q2,1)4 (3.1)

The above equation shows that the potential consists of two parts: a quadratic term, which
again provides a destabilizing linear force at small displacements and a quartic term, which
provides a stabilizing, nonlinear restoring force at large displacements. It is assumed later that qi,j
is a displacement that can be sensed and μ is a spring coupling parameter that can be manipulated
for active control and stabilization. Therefore, a general method can be considered such that the
potential energy can be formed from two parts: a quadratic term and a quartic term, which can
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Figure 3. Example of a simple adjacency relationship.

be defined by

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(q0,0 − q0,0)2 · · · (q0,0 − qi,j)
2 · · · (q0,0 − qn,n)2

...
. . .

...
. . .

...
(qi,j − q0,0)2 · · · (qi,j − qi,j)

2 · · · (qi,j − qn,n)2

...
. . .

...
. . .

...
(qn,n − q0,0)2 · · · (qn,n − qi,j)

2 · · · (qn,n − qn,n)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

and

M4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(q0,0 − q0,0)4 · · · (q0,0 − qi,j)
4 · · · (q0,0 − qn,n)4

...
. . .

...
. . .

...
(qi,j − q0,0)4 · · · (qi,j − qi,j)

4 · · · (qi,j − qn,n)4

...
. . .

...
. . .

...
(qn,n − q0,0)4 · · · (qn,n − qi,j)

4 · · · (qn,n − qn,n)4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

where M is a 2n × 2n matrix, the subscript ‘2’ indicates the quadratic term and the subscript ‘4’
indicates the quadratic term.

Then, an adjacency matrix is defined to form the generalized position of each node, which
includes the relationship between every node by using an element ‘1’ to define connected nodes
and ‘0’ to define unconnected nodes. Figure 3 illustrates a simple relationship between 4 nodes
which are connected with one another sequentially in turn, thus the adjacency matrix can be
defined by

A =

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤
⎥⎥⎥⎦ , (3.4)

with the boundary conditions q1 = q4 = 0.
In addition, a more general configuration can be considered by inserting the coupling

parameters μ into the adjacency matrix, which express the detailed mechanical relationship
between each of the nodes. The matrix A therefore can be rewritten as

A =

⎡
⎢⎢⎢⎣

0 μ1,2 0 0
μ1,2 0 μ2,3 0

0 μ2,3 0 μ3,4
0 0 μ3,4 0

⎤
⎥⎥⎥⎦ . (3.5)

A generalized, extensive form of the adjacency matrix can now be defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · μ0,0,i,j · · · μ0,0,n,n
...

. . .
...

. . .
...

μ0,0,i,j · · · 0 · · · μi,j,n,n
...

. . .
...

. . .
...

μ0,0,n,n · · · μi,j,n,n · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.6)

where μi,j,n,n defines the coupling relationship between nodes qi,j and qn,n.
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Accordingly, the potential energy of the system can be constructed by combining a quadratic-
term matrix, quartic-term matrix and adjacency matrix. To proceed we define R as

R = R1 ◦ R2, (3.7)

where ◦ denotes the Hadamard product (element-wise product). The Hadamard product is
an operation such that each element (ij) in the matrix is produced from the product of the
corresponding location elements (ij) in another two matrices of the same dimension to generate a
new matrix with the same dimension of the original two matrices. It is noted that R has the same
dimension as the operands with R1 and R2.

Therefore, the total potential energy V can be defined as

V = − 1
2 sum(M2 ◦ A1) + 1

4 sum(M4 ◦ Aμ), (3.8)

where A1 and Aμ are upper triangular matrixes that can be developed from equations (3.4) and
(3.6), respectively, such that

A1 =

⎡
⎢⎢⎢⎢⎣

. . . 1 1

0
. . . 1

0 0
. . .

⎤
⎥⎥⎥⎥⎦ (3.9)

and

Aμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · μ0,0,i,j · · · μ0,0,n,n
...

. . .
...

. . .
...

0 · · · 0 · · · μi,j,n,n
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

Since the system is considered conservative without dissipation, the Hamiltonian of the system
can then be constructed from the kinetic and potential energy as

T(p) = 1
2 ‖p2‖ (3.11)

V(q) = − 1
2 sum(M2 ◦ Aμ) + 1

4 sum(M4 ◦ A1), (3.12)

where again the set q = {qi,j}(i = 1 − n, j = 1 − n) is associated with the set of momenta p = {pi,j}(i =
1 − n, j = 1 − n). Then the dynamics of the system can be obtained from Hamilton’s equations.
It is clear that since the kinetic energy is independent of q, it can be seen that ṗ = −∇qV(q) so that

q̇i,j = pi,j (3.13)

and

pi,j = −∇qV(q). (3.14)

The model shown in figure 2 is now employed as an example to illustrate the detailed process
using the general methods above. The labelled graph of the simple smart surface structure
is shown in figure 4. The displacement of the boundary nodes can again be set to zero, i.e.
q0,0 = q0,1 = q0,2 = q0,3 = q1,0 = q1,3 = q2,0 = q2,3 = q3,0 = q3,1 = q3,2 = q3,3 = 0.

Therefore, the relevant matrixes can be defined as

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(q0,0 − q0,0)2 · · · (q0,0 − qi,j)
2 · · · (q0,0 − q3,3)2

...
. . .

...
. . .

...
(qi,j − q0,0)2 · · · (qi,j − qi,j)

2 · · · (qi,j − q3,3)2

...
. . .

...
. . .

...
(q3,3 − q0,0)2 · · · (q3,3 − qi,j)

2 · · · (q3,3 − q3,3)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

16×16

(3.15)
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Figure 4. Labelled graph of the simple smart surface structure.

and

M4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(q0,0 − q0,0)4 · · · (q0,0 − qi,j)
4 · · · (q0,0 − q3,3)4

...
. . .

...
. . .

...
(qi,j − q0,0)4 · · · (qi,j − qi,j)

4 · · · (qi,j − q3,3)4

...
. . .

...
. . .

...
(q3,3 − q0,0)4 · · · (q3,3 − qi,j)

4 · · · (q3,3 − q3,3)4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

16×16

(3.16)

and so it can be shown that

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

16×16

(3.17)

and

Aμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · μi,j,n,n
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

16×16

(3.18)

We use two different relationships μ1 and μ2 to construct the matrix Aμ, where μ1 defines the
relationship between free nodes and boundary nodes and μ2 defines the relationship between
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free nodes each other. Equation (3.17) can be therefore rewritten as

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 μ1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 μ1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 μ1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 μ2 0 0 μ2 0 0 0 0 0 0
0 0 0 0 0 0 0 μ1 0 0 μ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 μ1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 μ2 0 0 μ1 0 0
0 0 0 0 0 0 0 0 0 0 0 μ1 0 0 μ1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

16×16

(3.19)

Through using equation (3.12), the same expression for the potential energy can be found as
with equation (3.1). Therefore, the equations of motion can be written as

⎡
⎢⎢⎢⎣

q̈1,1
q̈1,2
q̈2,1
q̈2,2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

2μ1q1,1 + μ2(2q1,1 − q2,1 − q1,2)
2μ1q1,2 + μ2(2q1,2 − q2,2 − q1,1)
2μ1q2,1 + μ2(2q2,1 − q1,1 − q2,2)
2μ1q2,2 + μ2(2q2,2 − q1,2 − q2,1)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

−2q1,1
3 − (q1,1 − q2,1)3 − (q1,1 − q1,2)3

−2q1,2
3 − (q1,2 − q2,2)3 + (q1,1 − q1,2)3

−2q2,1
3 + (q1,1 − q2,1)3 − (q2,1 − q2,2)3

−2q2,2
3 + (q1,2 − q2,2)3 + (q2,1 − q2,2)3

⎤
⎥⎥⎥⎦ . (3.20)

Solving ∇qV(q) = 0 yields a number of equilibria for different values of μ1 and μ2, as shown
in figure 5. Although only μ1 > 0 is considered in the subsequent analysis, for completeness the
number of equilibria is shown for −2 < μ2 < 2. It can be seen that the total number of equilibria
varies with the coupling parameter μ2. In addition, the maximum number of equilibria occur
when μ2 = μ1 = 1, which is found to be 101. It is clear that these equilibria are both stable and
unstable and in principle may be connected through paths in the phase of the problem. One type
of path is the heteroclinic connection which connects equal-energy unstable equilibria through
their stable and unstable manifolds. Therefore, in order to explore all possible equilibrium
configurations of the smart surface model the case μ2 = μ1 = 1 for the coupling parameters
is used. The case μ2 > μ1 is used later to explore possible reconfigurations between different
unstable states of the structure.

The equilibrium configurations of the smart surface model are listed in table 1. The linear
stability properties of these equilibria can then be determined through linearization of Hamilton’s
equations in the neighbourhood of each equilibrium point by an eigenvalue approach. Through
dynamical system theory [34], a set of stable equilibria are then associated with conjugate
imaginary eigenvalues and a set of unstable equilibria are associated with real eigenvalues of
opposite sign. The linearization of Hamilton’s equations for some general equilibrium point
(q̃1,1, q̃1,2, q̃2,1, q̃2,2) of the 4 degree-of-freedom system can be expressed in matrix form as

⎡
⎢⎢⎢⎣

q̈1,1
q̈1,2
q̈2,1
q̈2,2

⎤
⎥⎥⎥⎦= (K + R)

⎡
⎢⎢⎢⎣

q1,1 − q̃1,1
q1,2 − q̃1,2
q2,1 − q̃2,1
q2,2 − q̃2,2

⎤
⎥⎥⎥⎦ , (3.21)
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Figure 5. Number of equilibria of the smart surface structurewith varying coupling parameterμ2 withμ2 = 1. (Online version
in colour.)

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ̃
1,1
1,2 − γ̃

1,1
2,1 − 6q̃2

1,1 γ̃
1,1
1,2 γ̃

1,1
2,1 0

γ̃
1,1
1,2 γ̃

1,1
1,2 − γ̃

1,2
2,2 − 6q̃2

1,2 0 γ̃
1,2
2,2

γ̃
1,1
2,1 0 γ̃

1,1
2,1 − γ̃

2,1
2,2 − 6q̃2

21 γ̃
2,1
2,2

0 γ̃
1,2
2,2 γ̃

2,1
2,2 γ̃

1,2
2,2 − γ̃

2,1
2,2 − 6q̃2

2,2

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.22a)

and R =

⎡
⎢⎢⎢⎣

2μ1 + 2μ2 −μ2 −μ2 0
−μ2 2μ1 + 2μ2 0 −μ2
−μ2 0 2μ1 + 2μ2 −μ2

0 −μ2 −μ2 2μ1 + 2μ2

⎤
⎥⎥⎥⎦ , (3.22b)

where γ̃
i,j
m,n = 3(q̃i,j − q̃m,n)2.

The eigenvalues of the linear system can then be found to determine local stability properties.
It can be shown that this 4 degree-of-freedom system possesses 29 unstable equilibria and 72
stable equilibria, again noted in table 1.

4. Heteroclinic connections
In order to explore the possible transition of the model smart surface using heteroclinic
connections, several configurations are selected from the set of equilibrium configurations
discussed above to act as the initial and final states, respectively. Meanwhile, from equation (3.20)
it can be shown that

q̈1,1 + q̈1,2 + q̈2,1 + q̈2,2 = 2q1,1(μ1 − q2
1,1) + 2q1,2(μ1 − q2

1,2) + 2q2,1(μ1 − q2
2,1)

+ 2q2,2(μ1 − q2
2,2) + 2q2,2(μ1 − q2

2,2), (4.1)

so that it can be seen immediately that equilibria can be found at E0(0, 0, 0, 0), E1
(√

μ1,
√

μ1,√
μ1,

√
μ1
)

and E2
(−√

μ1, −√
μ1, −√

μ1, −√
μ1
)
, which shows that these equilibria are

independent of μ2. It can be noted that the stability properties of equilibria E1 and E2 are a
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Table 1. Stability properties of the equilibria withμ1 = μ2 = 1 and the corresponding surface configuration. (Online version
in colour.)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

configuration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coordinates (0 0 0 0) (0 0 1 1) (−0.6 0.6 0.6−0.6) (−0.1 0.1−0.6 0.6) (0 0 0 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

potential energy 0 −1.5 −1.6 −1.1 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

type maximum saddle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number 1 28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eigenvalues ±2,±2, ±1.6,±0.8, ±1.3,±0.6i, ±1.4,±1.9, ±1,±1.1,

±√
2,±√

6 ±2.1i,±2.6i ±2.3i,±2.4i ±0.9i,±3.1i ±2.2,±3.0i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

configuration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coordinates (0.1 1−1 0.1) (1 1 1 1) (0 1 1 1) (1.2 0.6 0.6 1.2) (0 1 1 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

potential energy −2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

type minimum stable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number 72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eigenvalues ±0,±1.2i, ±0,±√
2i, ±0,±√

2i, ±0,±0, ±0,±√
2i,

±2.8i,±3.1i ±√
2i,±2i ±2.2i,±2.6i ±2.4i,±2.4i ±2.3i,±3.2i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function of the ratio between μ2 and μ1. It can also be shown that the equilibria E1 and E2
become unstable for μ2 > μ1. Therefore, E1 and E2 will be chosen to be unstable with μ2 > μ1
so that a heteroclinic connection can be found between E1 and E2 for illustration. The purpose
of finding such a transition is that the unstable equilibria E1 and E2 lie on the same potential
energy surface and so, in principle, zero net energy input is needed to reconfigure the structure
between them. Then, dynamical system theory can be employed to seek a possible phase
space connection between these unstable equilibria. For a conservative system, linearization of
Hamilton’s equations in the neighbourhood of each equilibrium point yields pairs of eigenvalues
λ > 0 and λ < 0, respectively. These eigenvalues have corresponding eigenvectors associated with
the directions us and uu. The eigenvectors us and uu are known to be tangent to the stable manifold
Ws and the unstable manifold Wu in the neighbourhood of each equilibria [27]. Therefore, the
eigenvectors can be mapped to approximate the stable and unstable manifolds by integrating
forwards or backwards from an unstable equilibrium point ze, defined by

zs = ze + εus (4.2)

and
zu = ze + εuu, (4.3)

for ε � 1. This method can be used find heteroclinic connections between equal-energy unstable
equilibria so that the structure can be reconfigured between unstable states. Symmetry is always
a basic property for heteroclinic connections in dynamical systems. Therefore, symmetry can be
imposed on the problem to search for heteroclinic connections. A two-dimensional space can be
obtained by a dimensionality reduction with the following transformation:

(
Q1
Q2

)
=
(

a1 a2 a3 a4
b1 b2 b3 b4

)⎛⎜⎜⎜⎝
q1
q2
q3
q4

⎞
⎟⎟⎟⎠ , (4.4)
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Figure 6. The value of Q̇2 at the first crossing of the unstable manifold with the Q2 axis, with the increasing parameter μ2

(μ2 = 1). (Online version in colour.)

where the pre-multiplication matrix is a constant set here to(
a1 a2 a3 a4
b1 b2 b3 b4

)
=
(

2 2 2 2
1 −1 −1 1

)
, (4.5)

thus transforming the four-dimensional space to a two-dimensional space, so that the potential
defined in equation (3.1) can be transformed to

V(Q, μ) = (2Q1 − Q2)4 − 2μ1(2Q1 + Q2)2 − 2μ1(2Q1 − Q2)2 − 8μ2Q2
2 + 16Q4

2 + (2Q1 + Q2)4

(4.6)

In this new coordinate system, the equations of motion can be obtained from Ṗ = −∇qV(Q)
and so the dynamics of the new system can then be described by

Q̇1 = P1, (4.7)

Ṗ1 = 2μ1(8Q1 − 4Q2) + 2μ1(8Q1 + 4Q2) − 8(2Q1 − Q2)3 − 8(2Q1 + Q2)3, (4.8)

Q̇2 = P2 (4.9)

and Ṗ2 = 16μ2Q2 − 2μ1(4Q1 − 2Q2) + 2μ1(4Q1 + 2Q2) − 64Q3
2 − 4(2Q1 + Q2)3 + 4(2Q1 − Q2)3.

(4.10)

In these new coordinates, the system is symmetric about the axis Q1 = 0. The unstable manifold
of E1 is therefore simply the reflection of the stable manifold of E2, which means that the structure
can be reconfigured from state E1 to state E2 in principle without energy input. Therefore, a
heteroclinic connection between E1 and E2 is symmetric about the axis Q1 = 0, and so must
intersect Q1 = 0 perpendicularly, i.e. Q̇2 = 0. The numerical method used to find heteroclinic
connection follows McInnes & Waters [27]: for μ2 < 1.2 and μ1 = 1, Q̇2 is sufficiently small for
an approximate hetercolinic connection to exist. Then when μ2 ≈ 1.687 and μ1 = 1, an exact
hetercolinic connection exists, as is clearly shown in figure 6. This demonstrates that in principle
for an exact value of μ1 there exists a value of μ2 not close to μ1 which admits a heteroclinic path.

The heteroclinic connection will therefore have a mirror image under Q2 → −Q2, as shown in
figures 7 and 8. To initiate the heteroclinic connection, a small disturbance (ε = 10−3) is added
along the unstable manifold of E1. For a true heteroclinic connection, motion away from an
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phase path in the new coordinate space (Q1 − Q2). (Online version in colour.)
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Figure 8. New coordinates (Q1 − Q2) for a heteroclinic connection between at E1 (8, 0) and at E2 (−8, 0) for μ1 = 1 and
μ2 = 1.687μ1. (Online version in colour.)

unstable equilibrium point and towards a connected unstable equilibrium point is asymptotically
slow. In practice, the actual phase trajectory must shadow the real heteroclinic connection and a
controller used to initiate and terminate the heteroclinic connection [29,30]. The corresponding
shape of the surface during the transition from E1(1, 1, 1, 1) to E2(−1, −1, −1, −1,) is shown
in figure 9.

Numerical experiments demonstrate that it is in general possible to find a heteroclinic
connection for some choice of coupling parameters μ1 and μ2, while again a controller [29] can
in principle be used to achieve the reconfiguration for a choice of parameters μ1 and μ2. Again,
in principle for a conservative system without internal dissipation, such reconfigurations do not
require the input of energy, which is efficient compared to conventional strategies with transitions
between passively stable configurations across a potential barrier.
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Figure 9. Transition from unstable equilibria E1 (1, 1, 1, 1) at t= 0 to unstable equilibria E2 (−1, −1, −1, −1,) at t= 10
forμ1 = 1 andμ2 = 1.687μ1. (Online version in colour.)

5. Structure-preserving stabilization control
This section presents a control method to stabilize the unstable equilibrium configurations of
the smart surface structure. For a Hamiltonian system, there exist hyperbolic equilibria that
have stable, unstable and centre manifolds, with the unstable manifold generating the instability.
However, a control law can be applied which will establish Lyapunov stability of the relative
motion about the equilibrium point and stabilize an unstable configuration [35,36]. Assuming
active control is actuated by the spring coupling parameters (equivalent to modulating their
natural length), the dynamics of the controlled system can be written as⎡

⎢⎢⎢⎣
q̈1,1
q̈1,2
q̈2,1
q̈2,2

⎤
⎥⎥⎥⎦= K

⎡
⎢⎢⎢⎣

q1,1 − q̃1,1
q1,2 − q̃1,2
q2,1 − q̃2,1
q2,2 − q̃2,2

⎤
⎥⎥⎥⎦+ B

[
μ1
μ2

]
= Kq + Bu, (5.1)

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ̃
1,1
1,2 − γ̃

1,1
2,1 − 6q̃2

1,1 γ̃
1,1
1,2 γ̃

1,1
2,1 0

γ̃
1,1
1,2 γ̃

1,1
1,2 − γ̃

1,2
2,2 − 6q̃2

1,2 0 γ̃
1,2
2,2

γ̃
1,1
2,1 0 γ̃

1,1
2,1 − γ̃

2,1
2,2 − 6q̃2

21 γ̃
2,1
2,2

0 γ̃
1,2
2,2 γ̃

2,1
2,2 γ̃

1,2
2,2 − γ̃

2,1
2,2 − 6q̃2

2,2

⎤
⎥⎥⎥⎥⎥⎥⎦
(5.2a)
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in colour.)

and B =

⎡
⎢⎢⎢⎣

2(q1,1 − q̃1,1) 2(q1,1 − q̃1,1) − 2(q1,2 − q̃1,2) − 2(q2,1 − q̃2,1)
2(q1,2 − q̃1,2) 2(q1,2 − q̃1,2) − 2(q1,1 − q̃1,1) − 2(q2,2 − q̃2,2)
2(q2,1 − q̃2,1) 2(q2,1 − q̃2,1) − 2(q1,1 − q̃1,1) − 2(q2,2 − q̃2,2)
2(q2,2 − q̃2,2) 2(q2,2 − q̃2,2) − 2(q1,2 − q̃1,2) − 2(q2,1 − q̃2,1)

⎤
⎥⎥⎥⎦ , (5.2b)

where γ̃
i,j
m,n = 3(q̃i,j − q̃m,n)2.

The controllability matrix [37] for this third-order system is then given by

C =
[
K DK D2K D3K

]
(5.3)

If the equilibria satisfy the conditions q̃1,1 	= q̃1,2 	= q̃2,1 	= q̃2,2, we can show that rank C = 4,
which implies that the system is fully controllable. However, for the example discussed above
in §4, it can be shown that rank C = 2, so that additional actuators are therefore needed to
ensure controllability. Therefore, the μ1 terms (the coupling parameter between each mass and
its boundary node) is divided into four parts as μ11, μ12, μ13 and μ14, which represent the
relationship between corresponding individual masses and their fixed boundaries.

Then the matrix B can then be expressed as

B =

⎡
⎢⎢⎢⎣

�1,1 0 0 0 �1,1 − �1,2 − �2,1
0 �1,2 0 0 �1,1 − �1,2 − �2,1
0 0 �2,1 0 �1,1 − �1,2 − �2,1
0 0 0 �2,2 �1,1 − �1,2 − �2,1

⎤
⎥⎥⎥⎦ , (5.4)

where �i,j = 2(qi,j − q̃i,j).
It can then be shown that the controller is constructed as

Tc = {−σ 2[G1u+uT
+ + G2u−uT

−] − ϕ2G3[uuT + ūūT ]} (5.5)

where G1, G2 and G3 are the gain parameters, u+ and u− are the stable and unstable
manifolds with corresponding eigenvalues ±σ , u and ū are centre manifolds with corresponding
eigenvalues are ±ϕi. A detailed development and proof of the control law can be found
elsewhere [35]. This control strategy can work effectively through estimating the relative motion
and maintaining the Hamiltonian the structure of the problem. Through equation (5.4) the
controller can now stabilize the smart surface to maintain its unstable configuration with the gain
parameters G1 = 1, G2 = 2 and G3 = 3, as shown in figure 10, with the required controls shown
in figure 11.
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A structure-preserving controller has therefore been developed to stabilize the smart surface
in an unstable configuration, and verified as effective numerically with suitable controls found.
The controller is based on computing the local stability characteristics of the motion through the
manifolds, which can, in principle, be realized through modulation of embedded smart materials
(e.g. SMAs) to manipulate the spring coupling parameters. Clearly, for a realistic smart surface
energy is expended by the controller in maintaining the structure in an unstable equilibrium
configuration, between reconfigurations using heteroclinic connections. We therefore envisage
the reconfiguration methodology proposed being used for applications where the structure has to
frequently reconfigure between different configurations, for example, for optical switching. In this
way, the energy efficiency of the heteroclinic connections for reconfiguration can compensate
for the energy expenditure by the controller while temporarily in an actively controlled
unstable state.

6. Connected smart surface units
The analysis from the previous section can now be used as the basis for the integration of
connected smart surface elements. Such integrated systems can be extended to many potential
applications which need frequent state switching to reduce mean power consumption and waste
heat dissipation. One important potential application of this integrated smart surface system is
that it can be reconfigured between two states to provide motion, for example, in a conveyer
system, to move an object towards a goal position through arranging sufficient numbers of smart
surface units.

It is instructive to consider an analogue model consisting of two smart surfaces to understand
the general behaviour of smart surface units connected in series. As shown in figure 12, the two
adjacent smart surface units are connected by rigid links, which provides a relationship between
each mass of every smart surface unit. When a vertical displacement (δ1, δ2) is applied in unit 1,
unit 2 will move with a corresponding displacement. The motion of the coupled system can then
be described by

qu1,1 = qu2,1 = δ1, (6.1)

qu1,2 = qu2,2 = δ1, (6.2)

δ̈1 = q̈u1,1 + q̈u2,1 (6.3)

and δ̈1 = q̈u1,2 + q̈u2,2, (6.4)
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Figure 12. Schematic diagram of two connected smart surface units. (Online version in colour.)
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Figure 13. Configuration change during transition from unit 1 to unit 2. (Online version in colour.)

where qu1,1 and qu2,1 represent two mass displacements of unit 1 and unit 2, respectively; qu1,2
and qu2,2 represent the other two mass displacements of unit 1 and unit 2, respectively.

Figure 13 shows the mass displacement of the each unit, which can be considered as
a heteroclinic connection of the integrated system. It can be seen that the relevant mass
displacements between unit 1 and unit 2 have a rigid relationship, which is shown as the dashed
line with the double-headed arrow. The parameters of the model used are the same as the model
in §4. The corresponding shape of the connected smart surfaces associated with initial and final
configurations are shown in figure 14. It can be seen that unit 1 is in a saddle configuration
initially and then changes to a stable configuration, accompanied with unit 2 being reconfigured
from a stable equilibrium to a saddle. With this scheme, the heteroclinic connection can be
used for reconfiguring an integrated smart surface which is assembled from distributed smart
surface units.

In the context of our proposed application, the two simply connected smart surface units can
realize reconfigurations as an integrated system. The smart surface unit can transmit motion
through connections with neighbouring units. This example is provided to demonstrate how
the methodology develop can be used to perform the reconfiguration of a larger smart surface
that would be energy efficient compare to traditional approaches with transitions between stable
states across a potential barrier.
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Figure 14. Corresponding shapes of the connected smart surface (a) initial condition (b) final condition. (Online version
in colour.)

7. Conclusion
Surface structures possessing multiple equilibria offer interesting dynamical behaviour with a
broad range of potential applications. This paper has presented a preliminary study of a simple
smart surface model composed of connected masses and linear springs. A general method
has been provided to build the equations of motion of such a smart surface system. The
theoretical model of the smart surface is nonlinear and complex, but some simple mathematical
techniques can be employed to obtain a more compact normalized form. The nonlinear
characteristics of the model can therefore be found by using dynamical system theory, which
provides a predictive basis for the subsequent analysis of reconfiguring the smart surface and
the design of structure-preserving stabilization control. Then, an active reconfiguration scheme
has been investigated to connect equal-energy unstable (but actively controlled) configurations
for the purpose of energy-efficient morphing of the smart surface. The reconfiguration of
the smart surface between two unstable states does not in principle need additional energy
input compared to reconfiguration between two stable configurations. To demonstrate that the
structure can be actively controlled in an unstable state, a control strategy has been proposed to
stabilize the unstable configuration. This control method establishes Lyapunov stability of the
relative motion about the equilibrium point and stabilizes an unstable configuration. A further
development of the smart surface is proposed as an integral system, where the smart surface
is extended by forming a series of connected smart surface units. The investigation into the
reconfiguration of connected smart surface units can therefore be developed to design larger
smart surfaces composed of many more units, which can be used for further applications, such
as for conveying, sorting and positioning micro-parts. The purpose of the paper has not been
specifically to analyse a high fidelity model of a real smart surface, but more generally to
explore a new concept for reconfiguring smart surfaces using heteroclinic connections between
unstable states.
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