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Abstract With increasing demand for rotor blades in
engineering applications, improving the performance
of such structures using morphing blades has received
considerable attention. Resonant passive energy bal-
ancing (RPEB) is a relatively new concept introduced
to minimize the required actuation energy. This study
investigates RPEB in morphing helicopter blades with
lag—twist coupling. The structure of a rotating blade
with a moving mass at the tip is considered under
aerodynamic loading. To this end, a three-degree-of-
freedom (3DOF) reduced-order model is used to anal-
yse and understand the complicated nonlinear aeroe-
lastic behaviour of the structure. This model includes
the pitch angle and lagging of the blade, along with
the motion of the moving mass. First, the 3DOF model
is simplified to a single-degree-of-freedom model for
the pitch angle dynamics of the blade to examine the
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effect of important parameters on the pitch response.
The results demonstrate that the coefficient of lag—twist
coupling and the direction of aerodynamic moment on
the blade are two parameters that play important roles
in controlling the pitch angle, particularly the phase.
Then, neglecting the aerodynamic forces, the 3DOF
system is studied to investigate the sensitivity of its
dynamics to changes in the parameters of the system.
The results of the structural analysis can be used to tune
the parameters of the blade in order to use the resonant
energy of the structure and to reduce the required actu-
ation force. A sensitivity analysis is then performed
on the dynamics of the 3DOF model in the presence
of aerodynamic forces to investigate the controllabil-
ity of the amplitude and phase of the pitch angle. The
results show that the bend—twist coupling and the dis-
tance between the aerodynamic centre and the rota-
tion centre (representing the direction and magnitude of
aerodynamic moments) play significant roles in deter-
mining the pitch dynamics.

Keywords Helicopter blade morphing - Resonant
passive energy balancing - Bend—twist coupling -
Inertial morphing

1 Introduction

In many aerospace applications, it is required that the

vehicle has a good performance in a broad range of con-
ditions. For example, the minimum required power in
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helicopter rotors at various flight conditions is achieved
from different twist distributions [1]. Inducing con-
trol on flexible aerostructures helps to optimize the
aerodynamic loads and reduce the energy consump-
tion in different flight conditions [2,3]. In addition,
energy exchange between different motions of rotor
aerostructures such as flapping, lagging, and pitching
is a property that has received attention for controlling
such structures [4—6]. The shape-adapting capability of
morphing aircraft gives the ability to control the per-
formance of aerostructures. Indeed, morphing aircraft
can be used not only to improve the performance of
an aircraft in one specific flight condition and reduce
the energy consumption, but also to broaden the range
of good performance over different conditions. Ajaj
et al. [4] presented a novel classification framework
based on the functionality, operation, and the struc-
tural layout of morphing technology. A review of the
morphing concept in wind turbine blades can be found
in [5]. Vos et al. [7] introduced a new flight control
mechanism employing piezoelectric bimorph bender
actuators to apply control to an unmanned aerial vehi-
cle with a deformable wing structure. The introduced
piezoelectric flight control mechanism was applied to
a morphing wing and the details of the design, mod-
elling, and experiments were given in [8]. Fincham and
Friswell [9] introduced an inner optimization strategy
within the main aerodynamic optimization process to
take the limitations of the possible morphing structure
into account at the early stages of the design. Eguea et
al. [10] exploited the genetic algorithm to find the opti-
mum camber morphing winglet in order to minimize
the fuel consumption of a business jet. The potential
critical speed for a morphing wing with an active cam-
ber design was investigated by Zhang et al. [11] using
a low-fidelity model. For this purpose, they also uti-
lized both steady and unsteady aerodynamic models to
develop an aeroelastic model for the structure under
study.

The concept of bend—twist coupling in morphing
structures to increase the controllability of flexible
aerostructures has received considerable attention [12].
Bend-twist and extension-twist coupling were studied
experimentally on a thin-walled composite beam [13].
It was shown by an analytical model [14] that, by using
dynamic blade twist, the performance of a helicopter is
enhanced and the power required for the rotor blade is
reduced. Theoretical and experimental investigations
on the bend-twist coupling concept in wind turbine
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blades were carried out in [15]. Gu et al. [16] utilized
the twist morphing concept and designed a novel meta-
material to increase the aerodynamic efficiency of a
rotor blade by the passive twist generated by the bend—
twist coupling. The designed meta-material was used to
propose a concept design of a blade spar with a rectan-
gular cross section to investigate the relation between
the cell geometries of the core material and the bend—
twist property of the spar.

The application of a lumped mass moving in the
spanwise direction to absorb the vibrational energy
and mitigate the oscillation of the helicopter rotor was
investigated in [17—-19]. They demonstrated that the sta-
bility of the helicopter rotor is influenced by the cou-
pling of the flapwise oscillation and lagwise motion
induced by the Coriolis forces. Kang et al. [20] carried
out numerical and experimental analysis and demon-
strated the improved stability of rotors resulting from
the embedded chordwise absorbers. Combining the
bend—twist concept with a movable mass at the tip of
a morphing blade is a new concept that exploits the
bending moment to generate the twist and control the
aerodynamic performance of the structure. A morphing
blade composed of a composite hingeless rotor blade
and a moving lumped mass at the tip was studied by
Amoozgar et al. [21]. The lumped mass is subjected to
an actuation force and is allowed to move in the chord-
wise direction. The bending moment induced by the
centrifugal force of the moving mass will generate a
twist in the blade due to the bend—-twist coupling.

In addition to tuning the structures and optimizing
the parameters to increase the performance of aerial
vehicles, passive energy balancing (PEB) is utilized to
passively balance the energy between the aerostruc-
ture and the actuator and reduce the required actuation
energy. Wang et al. [22] applied a new passive energy
balancing mechanism using a spiral pulley to reduce
the required actuation force in a morphing structure.
Zhang et al. [23] introduced a negative stiffness mech-
anism for a passive energy balancing concept applied
to a morphing wingtip with a linear actuator. Their tar-
get was to optimize the passive energy balancing design
and minimize the energy consumption and the required
actuation force.

A new extension of PEB is resonant passive energy
balancing (RPEB). The mechanism of RPEB utilizes
the resonant energy of the structure to provide a portion
of the energy required to deflect the morphing structure.
In this case, the energy can be gained in the vicinity
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of various resonances of the structure, depending on
the properties and operating condition of the structure.
These resonances can either be based on the natural fre-
quencies of the blade and their sub- or super-harmonics,
or an additional mechanism. However, in spite of the
knowledge gained for PEB in morphing aircraft, this
concept is still in its infancy. This study is a step for-
ward in applying RPEB to an MDOF structure.

As described above, a recently introduced morph-
ing concept uses a movable mass at the tip of the blade.
In contrast to previous works on the dynamic of span-
wise morphing beams [24,25], this concept utilizes the
bend-twist coupling in the blade to induce a twist angle
from the centrifugal force applied to the moving mass.
The moving mass is forced by an actuation mecha-
nism to adjust the required amount of induced twist
angle. The parameters of the structure and the moving
mass are tuned so that the resonant oscillations are used
to supply energy to actuate the moving mass. Hence,
the RPEB concept can be used to reduce the actuation
energy consumption [26].

This study investigates the application of the mecha-
nism of RPEB in morphing blades with a moving mass
atthe tip. Indeed, the results shown in this study demon-
strate how different parameters of arotating blade affect
the dynamic behaviour of the structure. Then, the con-
trollability of the dynamics of rotor blades using bend—
twist coupling and the aerodynamic moment is deter-
mined in the current study.

This study is focused on the investigation of RPEB
for twist morphing helicopter blades, and a better
understanding of the system results in a more efficient
design. For instance, the nonlinear behaviour due to
the structural nonlinearity of the blade and the nonlin-
ear aerodynamic loading makes the prediction of the
dynamics of the system complicated [27]. In addition,
unwanted dynamical behaviour, such as quasi-periodic
and chaotic responses, should be avoided in the design
[28]. Therefore, analysing the nonlinear dynamics of
the system is required. Thus, a morphing helicopter
blade with an actuated moving mass at the tip is mod-
elled using a three-degree-of-freedom (3DOF) discrete
system. The pitch response and the lagging motion of
the blade, in addition to the displacement of the mov-
ing mass, are the 3DOF in the model. The aerodynamic
coefficients are estimated using experimental data [29—
32]. A simplified single-degree-of-freedom (SDOF)
model is used to demonstrate the effect of important
parameters on the dynamics of the pitch response. The

structural analysis is carried out on the parameters of
the 3DOF model neglecting the effect of aerodynamic
loading. The results of the structural analysis can be
used to tune the parameters for desired purposes (e.g.
locating resonant frequencies in the range of work-
ing rotating speed). The stability analysis of the 3DOF
model is carried out and the controllability of the pitch
response is discussed. Finally, a brief conclusion is pro-
vided.

2 Mathematical modelling

In this section, a reduced-order mathematical model of
the structure is described. The schematic of the cross
section of the main rotor blade of a helicopter is shown
in Fig. 1. The movable mass m is assumed to be mov-
ing along the chord of the blade. That is, the flapwise
bending moment induced by the centrifugal force of the
movable mass is insignificant. Accordingly, there will
not be any significant coupling between the flapwise
bending moment induced by the movable mass and the
blade twist angle. Hence, the structure of Fig. 1 is mod-
elled by a 3DOF discrete system. The lag displacement
x1 and the pitch angle « of the blade are considered as
two degrees of freedom of the reduced-order model of
the blade, and the motion x; of the moving mass m> is
considered as the third degree of freedom. In the fig-
ure, AC and RC denote, respectively, the aerodynamic
centre and rotational centre of the aerofoil, and GC is
the centre of gravity of the blade with mass of mj. [
is the chord length of the aerofoil, and dy, d, and dy
are, respectively, the distances of GC, the initial posi-
tion of the moving mass, and AC with respect to RC.
c1 and k; are the damping coefficient and the stiffness
of the blade in the lag direction. In fact, k1 is not really
physical, but represents the lagwise bending stiffness of
the beam. « is the rotational (torsional) stiffness of the
blade in the pitch angle direction. Aerodynamic force
F,c is applied to the blade at the aerodynamic centre
AC and the moving mass is excited by a harmonic force
with amplitude f;, and excitation frequency wy,. The
aerodynamic moment at AC is neglected in this study.
Note that this is a reasonable assumption because many
helicopter blade sections are designed with zero coef-
ficient of moment [33,34]. ¢;, k3, and k,, are, respec-
tively, the linear damping, linear stiffness, and nonlin-
ear cubic stiffness through which the moving mass is
connected to the blade. v}, represents the velocity of the
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Fig.1 The 3DOF discrete
system of a twist morphing
blade

blade which is determined using the rotating velocity
of the blade and the forward speed of helicopter as

vp = v + V¢ cos(wot), (D

where w( denotes the rotating velocity of the main rotor,
vo is the translational velocity of the blade due to rota-
tion and V; is the forward speed of helicopter.

2.1 Potential energy of bend—twist coupling
deformation

Due to the bend—twist coupling introduced through the
composite layup, the lagwise bending moment in the
composite spar induces a twist angle in the spar. For the
helicopter blade, a twist is induced in the spar due to
the bending moment generated by the centrifugal force
of the moving mass, as shown in Fig. 2. The distance of
the moving mass from RC is a function of the rotating
frequency wg, which in turn induces a periodic torsional
moment.

My(x) = —(maLeg cos(B))(dz + x2)

+mo Lo sin(B)(L — 2), )
where B is the angle between the direction of the cen-
trifugal force of the moving mass and the longitudinal
axis of the spar. The coordinate axes xyz are shown in

Fig. 2. For the 3DOF discrete system, the second term
on the right side of Eq. (2) is eliminated as there is no

spatial variable z. The function cos(8) = —L2+(1:1 —
\% 2TX2

is approximately 1 considering the dimensions of the
blade. Therefore,

My = my L (da + x2). (3)

Then, the twist induced by bend—twist coupling is
determined in the form

2 Ty
Ty = —D(myLwy)(da + x2), oy = - “)
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Fig.2 Centrifugal force of the moving mass in a twist morphing
blade

where Ty is the torsional torque due to bend—twist cou-
pling, D denotes the coefficient of bend—twist cou-
pling, and k and oy are the torsional stiffness and twist
angle due to the bend—twist coupling, respectively. The
potential energy Uy due to the bend—twist coupling is
obtained as

Upt = f Tyda = / (=DmayLw}(dy + x2))da

= —D(mzLa)(z))ot(dz + x2). (5

2.2 Equations of motion: 3DOF model

To derive the equations of motion of the 3DOF sys-
tem of Fig. 1, Lagrange’s equations are applied to the
kinetic energy, potential energy, and non-conservative
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terms of the system. Displacements of m and m, are

determined with respect to RC as

X1, = (x1 +dj cos oz)f — (d; sin a)j,

X3, = (x1 + (dy + x2) cos @) i — ((da + x2) sin ) j,
(6)

where i andj are unit vectors in the x and y directions.

Considering the velocity v of the tip of the rotating

blade, the absolute velocities of 7| and m, with respect

to RC are obtained, respectively, as

X1, = (vo + X1 — dja sin (x)i — (dja cos Ol)j,

X, = (UO + X1 + xpcosa — (dp + xp)& sin a)i @)

— (#2sina + (d + x2)é cos a)j.

Using the velocities X1, and X,_, the kinetic energy of
the system is written in the form

)

I
= 3 [m (f + 5 + 2001 +dfa’?

2 “+ my |)'(2a

=] :
_E(ml |X1a

—2d1(vo + X1)a sin @) ®)
+ mz(vé + &7 4+ 200k + X5 + (dy + x2)%&?
—2(dy + x2)(vg + X1)& sina
4+ 2(vg + X1)xp cos a)].
Using the potential Uy of Eq. (5) due to the bend—
twist coupling of the blade, the potential energy and

non-conservative terms of the 3DOF system are given,
respectively, as

1 |
V= Eklx% + 1/2ca® + an)é

1
+ 5koxd + DmrLof)ald: + ). ©)

D, = (c1%1 — FD)éxl + (02552)6):2 + (Facdac)éa,

where €, €y,, and &, are, respectively, unit vectors
in the directions of lagging motion xj, moving mass
displacement x;, and the pitch angle «, and

Fac = (Fi cos )i + (Fp sin a)j. (10)

F1. and Fp denote the aerodynamic lift and drag forces,
respectively, given by

1 2

. =—chl(v0 + Vr COS(a)()l‘)) ,

2
| (11)
Fp =§chl (vo + V¢ cos(wot))z,
where ¢, and cp denote the lift and drag coefficients and
p isthe density of air. Applying Lagrange’s equations to

the kinetic and potential energy, and non-conservative
terms of the system, the equations of motion of the
system can be derived as

mq [dlza —d1 X sina] + ma[2(dy + x2) X2

+ (d2 + x2)%G

— (dy + x2)Xy sina] + cp& + Kk

— D(my L) (da + x2)

1
= 3 (cL cosa + cp sina)dyc pl (Lwy + Vi cos(a)ot))2

my(¥] —dj@sina — dld(z cos ) + mo[X] + ¥y cosa

— 2xa sina (12)

— (dy + xp)asina — (dy + xz)éz2 cos o]

+c1X1 + kixy

1
= Echl(Lwo + Vg cos(a)ot))2 — fmcos(wp,t) cosa

myp(Xp + X1 cosa — (dy + x2)6%)
+ 2% + koxy + knxi’

— D(mzLa)(z))oe = fmcos(wmt).

Defining the dimensionless parameters as

i d
t* = toy, x,'*=;—l, a* =a, d;:d—z,
1 1
dye dx*
* ok i
dac = d_l’ X, = ar’ (13)

the non-dimensional equations of motion of the 3DOF
system are obtained as

(@ — i} sina®) + e21[2(d5 + x3)X5a* + (d5 + x3)%6*
—(d} + x3)E} sina*] + 27 a*
+2¢,4" — £ D* Q23(d5 + x3)
= mo(cp cosa™ + cp sina™®)dy. (20 + vy cos(£20t))?
(%] —a*sina™ — &* cos o)
+e21 (X + X5 cosa™ — 2x5a" sina™
—(dy + x3)a* sina*
—(d; + xi‘)dt*2 cosa™) +241xf + xf
= mocp (20 + vy cos($201™))*
—&1 Fyy cos(ng 20t™) cosa™

(5 + ¥T cosa® — (df + 1))
k*
20082115 + 23,%5 + 8—"x§‘3
21

—D*.Qg * = Fpcos(ng 20t™), (14)
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Fig. 3 Linear and quadratic approximations for the lift and drag coefficients as functions of pitch angle

where
my « dy % dyc
£ = —, =—, dy=—,
AT T g Ty
Vi ,OlL2
vp = ——, =
f La)l 2m1d1
w DL cl
Qtl = _t7 * = _7 ;‘1 == b
w1 di 2mwi
=2, ¢ - )
2= , = —F
2mowy * Zmldlza)]
w knd?
20y = 2, k= oL Fm=f—m2,
w1 k1 madiwy
2
nQ = _m7 -Qm = w_mv QO = ﬂ’
$20 w1 w1
and
k k K
w%:—l, w%:—z, W = 7 (16)
mi my mld1

The superscript * is removed for the sake of brevity
in the subsequent discussions. The lift ¢y (o) and drag
cp(a) coefficients are functions of the pitch angle of
the blade. These functions are estimated according to
the experimental data [29-32] of the Bo-105 blade for

the lift and drag coefficients as
L= Aja+ As, cp=Bia®>+ Ba+Bs.  (17)

The coefficients Aj, A> and B, B, B3 are obtained
by fitting a straight line and a quadratic curve to the
experimental data for the lift and drag coefficients,
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respectively. Figure 3 shows the fitted curves to dif-
ferent experimental data for lift and drag coefficients.
Table 2 gives the baseline coefficients for ¢y, and cp in
Eq. (17).

For reliable analysis of the dynamics of the system
under study, the values of the non-dimensional param-
eters should be in a feasible range. Hence, a set of base-
line values for the dimensional parameters of the Bo-
105 blade is derived from real dimensions and exper-
imental data and given in Table 1. wer in Table 1 is
the reference rotating speed of the helicopter in for-
ward flight. These data are then used to estimate phys-
ically meaningful variations for the non-dimensional
parameters of the system of Eq. (14). For example, from
Table 1, £2¢,; = ﬁelf = 1.5 is obtained for the Bo-105
blade. Based on this, an approximate rotating frequency
range of 290 &~ 0 ~ 7 is considered for the dynamic
analysis of the structure to account for the variabili-
ties of both the lagwise natural frequency and the blade
rotating frequency of the aircraft. The baseline values
of the non-dimensional parameters of the system are
given in Table 2.

2.3 SDOF model

In the first step of this study, the dynamic response
of a single-degree-of-freedom (SDOF) model of the
morphing blade is investigated to examine the effect
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Table 1 Dimensions, modal parameters, and mechanical properties of the Bo-105 blade, wrr = 44.4rad/s

Parameters (unit) Value Parameters (unit) Value

Blade length, L(m) 4912 Blade chord, /(m) 0.27

Relative lagging frequency, % 0.666 Relative twisting frequency, % 3.6

Effective blade mass, 3132'(’)‘ (kg) 242 Approximate lag stiffness, EI (Nm?) 175,000

Approximate twist stiffness, GJ (Nm?) 5000

Table 2 Baseline non-dimensional parameters Table 3 Initial values of the parameters of Eq. (18)

Parameter Baseline value Parameter Baseline value Parameter Baseline Parameter Baseline
value value

&1 0.05 21 1.5

kn 0.02 Fm 0.02 $2n 3 b 15

ne 1 g 0 X» 0.5 dyc 0.25

dy 0.25 dyc 0.25

241 3 D 1.5

9 0.008 g1 0.009 the pitch angle. A frequency domain analysis method

mo 75 v 0.45 such as the incremental harmonic balance method

Ay (cL) 0.09 A (cL) 0.1 (IHBM) or the complex averaging (CXA) technique

By (cp) 3.3 x 10—4 B> (cp) 6.3 x 107* can be used, along with numerical continuation to find

B3 (cp) 8.5 x 1073 e 0.05 the steady-state response of the pitch angle. In this sec-

of important parameters on the dynamic behaviour of
the pitch angle. To find the SDOF model, the lagwise
motion of the blade is neglected from the equations of
motion given by Eq. (14) and the motion of the moving
mass is assumed to be harmonic. A linear dashpot with
damping ratio ¢, is added to the equation of motion
to include the damping effect of blade lagging on the
dynamics of the pitch angle. Hence, the equation of
motion of the SDOF model is given as

& + e21[2(ds + x2)52& + (da + x2)%8
+ Q2+ 204@ — £21 D23 (da + x2) (18)

= mo(cL cosa + cp sin a)dac (20 + v cos(Qot))z,
where
xy = X sin(£20t + B). (19)

Harmonic behaviour is assumed for the pitch angle.
Thus

o =ay+ Z S(aiejngot), (20)

where «¢ and «; denote, respectively, the static deflec-
tion and the complex amplitude of the ith harmonic of

tion, CXA along with arc-length continuation is used
to investigate the steady-state dynamics of the system
of Eq. (18). The first five harmonics (£2o, . .., 5§2) are
taken into account and the values given in Table 3 are
used as the initial values of the parameters of Eq. (18).

3 Results and discussion

In this section, the equations of motion of the struc-
ture under study are solved using different methods
and the obtained results are discussed. To obtain the
dynamic response of the system in this study, two dif-
ferent methods are used: direct integration (DI) using
the ODE functions in MATLAB, and the complex aver-
aging technique (CXA) [35] along with arc-length con-
tinuation. The former is used to find the response of
the system in the time domain. However, the obtained
response can be transformed into the frequency domain
using methods such as the fast Fourier transforma-
tion (FFT). The CXA method, on the other hand, is
used to find the steady-state dynamics in the frequency
domain. Each method has its advantages and disadvan-
tages. To find the time-domain dynamics of the system,
either transient or steady state, direct integration (DI)
is used. However, using DI is computationally expen-
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Fig. 4 The frequency-domain steady-state response of the SDOF model of the pitch angle for the initial values of Table 3

sive to obtain the steady-state response in the frequency
domain, particularly for a wide range of frequencies.
On the other hand, using the CXA technique reduces
the computational cost significantly. The drawback of
CXA is that it is very difficult to use for dynamical
systems with high frequency content or non-periodic
responses, such as those with chaotic responses.

3.1 SDOF analysis of RPEB

The steady-state frequency domain response of the sys-
tem is given in Fig. 4 for the initial parameters given in
Table 3. The values of other parameters of the SDOF
model of Eq. (18) are given in Table 2. In the figure,
ag is the static deflection, «; denotes the ith harmonic
of the pitch angle, and |«;| and ¢, are, respectively,
the amplitude and phase of «;. The static deflection,
amplitude—frequency diagram, and phase of the first
three harmonics of the steady-state response of the pitch
angle are given. The stability analysis on the analytical
results obtained from the CXA method has been under-
taken using Lyapunov’s First Theory of Stability. The
red and blue colours in the figure denote the stable and
unstable responses, respectively. A bifurcation analysis
is carried out on the steady-state dynamic response of
the system, and SN represents the saddle-node bifurca-
tion. All of the phase values of the pitch angle in this
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study are calculated with respect to the aerodynamic
force. The results show that the system responds with
a hardening nonlinearity.

The effects of the variations of key parameters on
the dynamics of the SDOF model of Eq. (18) are now
investigated. The effect of variation in the parameter dj
on the dynamics of the pitch angle is shown in Fig. 5.
The results illustrate that the blade behaves with a soft-
ening nonlinearity for doc < 0, while altering dy. to
positive values causes the nonlinearity of the system to
change to hardening. This behaviour is due to the non-
linearity in the aerodynamic moment in Eq. (18). The
sign of this nonlinear term is directly associated with
the sign of d,, that is the direction of the aerodynamic
moment. Itis observed in Fig. 5b that changing the sign
of dy¢ leads to a change in the sign of the static deflec-
tion. Indeed, the blade will pitch nose up and down,
respectively, for positive and negative values of dy.
According to the results, there exists an asymmetry in
the static deflection of the pitch angle with respect to
the value of d,.. The reason is that, in the presence of
X3, the aerodynamic force is not the only load applied
to the system. Therefore, although the sign of the pitch
angle changes with the sign of d,, the static pitch is
not symmetric even for the case of zero bend—twist cou-
pling. As expected, the vibration amplitude of the pitch
response reduces when the magnitude of d,¢, and con-
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Fig. 5 Frequency-domain steady-state response of the pitch angle for the variation of d,¢; a waterfall amplitude—frequency diagram;
b static deflection; ¢ 2D amplitude—frequency diagram; d phase of the pitch angle

sequently aerodynamic moment, decreases. Figure 5d
shows a shift in the phase of the steady-state response
of the pitch angle due to changes in the value and sign of
dyc. The smaller phase shift takes place for changes in
the magnitude of d,: and the larger shifts happen when
the sign of d, varies. Therefore, dy, or in other words,
the value and sign of aerodynamic force/moment is a
key parameter in determining the amplitude and phase
of the pitch angle.

Figure 6 gives the results of the steady-state pitch
oscillation in response to variations in the bend—twist
coupling D, neglecting the effect of aerodynamic
forces by setting d, to zero. Figure 6a shows that the
resonant amplitude of the pitch oscillations has a direct
relation to the magnitude of D. The static deflection
results in Fig. 6b show a similar behaviour as the deflec-
tion increases when the coupling D increases. Further-
more, Fig. 6b and c shows that both the static deflection
and the amplitude of steady-state pitch dynamics are
symmetric with respect to zero bend—twist coupling,
D = 0. In other words, the magnitude of static deflec-
tion and the amplitudes of the pitch response for the
same magnitude of coupling D but different signs (e.g.
D = 1 and —1) are exactly the same. However, the
direction of the static deflection varies when the sign of
the coupling changes. Indeed, the blade will pitch nose
up and down, respectively, for negative and positive

values of D. The phase of the pitch response depends
only on the sign of D and any change in the magnitude
of coupling without altering its sign does not change the
phase of the response, as shown in Fig. 6d. Hence, both
the magnitude and sign of the bend-twist coupling D
are important in determining the static deflection, and
the amplitude and phase of the pitch response.

Figure 6 shows the pitch dynamics in the absence
of aerodynamic loading. However, the aerodynamic
forces and moments are vital for the dynamics of the
blade and cannot be ignored. Figure 7 shows the effects
of the aerodynamics with dyc = 0.25 on the dynamic
behaviour of the pitch angle. It can be observed that
the amplitude of vibration still varies by changing the
coupling D. However, the sensitivity of the pitch oscil-
lation amplitude to the variation of D has been signifi-
cantly reduced. Also, including the aerodynamic forces
removes the symmetry in the static pitch response, as
shown in Fig. 7b. In this case, changing the bend—twist
coupling from D = —1.5to D = 1.5 causes the
static deflection to reduce, although the change in static
deflection is not significant. The symmetry in the phase
of the pitch response shown in Fig. 7c is not observed
in this case. In fact, both the sign and magnitude of D
will affect the phase of the pitch angle.
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Fig. 6 Frequency-domain steady-state response of the pitch angle for the variation of bend—twist coupling D for dyc = 0. a 3D waterfall
diagram; b static deflection; ¢ 2D amplitude—frequency diagram; d phase of the pitch angle

3.2 Structural analysis

In this section, the effects of important parameters
of the 3DOF model of the structure of Fig. 1 on the
dynamic behaviour are investigated. The main reason
for this investigation is to show which structural param-
eters can be used for tuning the system according to
desired purposes. To this end, the effect of aerodynamic
loads is neglected, and the steady-state dynamics of the
system is obtained in the frequency domain by apply-
ing the CXA technique with arc-length continuation to
Eq. (14).

The effect of the natural frequency £2;; of the pitch
angle on the dynamic pitch response is shown in Fig. 8.
The results show that increasing §2;; reduces the res-
onant amplitudes of the dynamic pitch response at
different resonant frequencies. Indeed, increasing the
natural frequency of the pitch angle is equivalent to
higher torsional rigidity, and this leads to lower res-
onant amplitudes. Furthermore, changing the natural
frequency £2,1 moves the locations of the resonant
amplitudes associated with the pitch angle natural fre-
quency and its higher harmonics. Figure 8c shows how
increasing the pitch natural frequency reduces the pitch
resonant amplitudes. In addition, higher values of £2;;
increase the natural frequency of the moving mass due
to the coupling between the pitch motion and the mov-
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ing mass. Changes in the phase of the pitch angle in
response to changes in §2;; are illustrated in Fig. 8d.
The steady-state response-frequency diagram of the
pitch angle is shown in Fig. 9. The variation of £2;;
affects not only the resonant amplitudes of the pitch
angle, but also the location of the resonant frequen-
cies. It is observed that the pitch response of the blade
experiences one resonance for each natural frequency
of the pitch angle and the moving mass. There also
exist other resonances related to higher harmonics of
the pitch angle. The results show that the nonlinear
behaviour of the pitch response is stronger for lower
values of the natural frequency £2;1, as the linear stiff-
ness of the moving mass decreases. By increasing §2;1,
the resonant amplitudes of the pitch response increases
up to £271 = 2.5 and then reduces for further increases
in £221. The coupling between the motion of the mov-
ing mass and the pitch angle dynamics, means that for
natural frequencies of the moving mass less than the
torsional natural frequency (§221 < $2;1) the pitch res-
onance moves to the right (i.e. £2;1,.,.4 > $2/1). On the
other hand, for 21 > £2,1, the actual pitch resonant
frequency £2;1,.,. 1S less than the uncoupled natural
frequency £2,;. Figure 9b illustrates that increasing the
natural frequency £2,; results in stiffening of the mov-
ing mass, and this consequently leads to less deflec-
tion of the moving mass and less static pitch deflection
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Fig. 8 Response-frequency diagram of the steady-state dynam-
ics of pitch angle for different values of the natural frequency
§2;1 of the pitch angle. a 3D waterfall diagram of the amplitude—

due to bend-twist coupling. From the results shown in
Fig. 9, the parameter §2,; provides the ability to tune
the structure so that the rotating (excitation) frequency
can be located at, or in the vicinity of, either the moving

frequency response; b static deflection of the pitch angle; ¢ 2D
amplitude—frequency diagram; d phase—frequency diagram

mass natural frequency or the pitch resonant frequency.
Therefore, the structure can use the energy arising from
the resonant oscillations. However, the resonant ampli-
tude may be dangerous for the structure, particularly
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Fig. 9 Response-frequency diagram of the steady-state dynam-
ics of pitch angle for different values of the natural frequency £27;
of the moving mass. a 3D waterfall diagram of the amplitude—

if it is a linear resonant amplitude. To deal with this
problem, the parameters of the system are tuned so
that the operating frequency is located in the vicinity
of the nonlinear resonant amplitude. Having nonlin-
ear resonant amplitude, instead of a linear resonance,
restrains the amplitude of oscillations at a fixed rotating
frequency. In the next section, it is shown how the non-
linear behaviour of the structure can be used for RPEB
while avoiding the dangerous linear resonant amplitude
that may lead to fracture in the blade. On the other hand,
it is shown how the stability analysis of the morphing
blade helps to better understand the nonlinear dynam-
ics of the structure. The results of stability analysis are
then used to determine the safe region of operation.
Figure 10 shows the amplitude/phase—frequency
diagram of the steady-state pitch response of the blade
within the rotating frequency bandwidth £2p = 0 ~ 6.5
for different values of lag—twist coupling D. In this
case, by neglecting the aerodynamic loading, the only
excitation on the structure is the actuation force applied
to the moving mass. Therefore, the dynamic pitch
response depends on the dynamics of the moving mass
and the value of the coupling D. The waterfall diagram
of the pitch response in Fig. 10a shows that changing
the value of D leads to changes in the resonant vibra-
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frequency response; b static deflection of the pitch angle; ¢ 2D
amplitude—frequency diagram; d phase—frequency diagram

tion amplitudes of the pitch angle. For D = 0, as there
is no coupling between the pitch angle and the moving
mass, the pitch angle shows zero amplitude response.
Increasing the magnitude of D leads to increases in
the resonant amplitude, as the coupling between the
moving mass and the pitch angle becomes stronger.
In addition, new resonances appear in the response by
increasing the value of D to greater than D = 0.5. The
locations of these new resonances also depend on the
value of the bend—twist coupling. The static deflection
of the pitch angle depends on the sign of D, and the
blade will pitch nose up or down, respectively, for neg-
ative and positive coupling D, as shown in Fig. 10b.
Also, the blade will have greater static pitch deflection
for higher magnitudes of D. In contrast to the magni-
tude of D, Fig. 10c shows that the sign of the bend—
twist coupling does not have any effect on the amplitude
of the pitch vibration, in the absence of aerodynamic
forces. In other words, the amplitude—frequency dia-
gram of the pitch angle is symmetric with respect to the
value of D. However, altering the sign of the coupling
D results in a change in the phase of the pitch angle by
7 rad, as shown in Fig. 10d. Therefore, the results of
Fig. 10 demonstrate that both the magnitude and sign of
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Fig.10 Response-frequency diagram of the steady-state dynam-
ics of pitch angle for different values of bend—twist coupling D.
a 3D waterfall diagram of the amplitude—frequency response; b

the bend—twist coupling D can be useful in determining
the dynamic properties of the pitch response.

Figure 11 shows the amplitude—frequency response
of the steady-state pitch dynamics for different levels
of actuation force Fy,. Figure 11a, c illustrates the 3D
waterfall diagram and 2D amplitude—frequency dia-
gram of the first harmonic of the pitch oscillation,
respectively. Figure 11b gives the static deflection of
the pitch response, and the phase of the first harmonic
of pitch oscillation is shown in Fig. 11d. «g, |o1],
and ¢, denote the static deflection, and the amplitude
and phase of the first harmonic of pitch oscillation,
respectively, The results show that increasing the actu-
ation level increases the resonant amplitude of the pitch
angle. Furthermore, increasing Fy, excites the nonlin-
earity in the structure and multiple solutions appear
for higher values of Fy,. In contrast to the vibration
amplitude, the static deflection of the pitch angle is not
affected by changes in the actuation force. Thus, the
actuation force can be used to change the amplitude of
the pitch oscillation without affecting the static pitch
deflection. Figure 11d shows that there is a phase dif-
ference between the case without actuation force and
with actuation force. However, in the presence of actu-

static deflection of the pitch angle; ¢ 2D amplitude—frequency
diagram; d phase—frequency diagram

ation, the phase of the response is not affected by the
actuation level.

4 Sensitivity analysis

Based on the discussion in the previous sections, a
parametric study is performed on the dynamics of the
3DOF model of the blade considering the variation of
two important parameters: bend—twist coupling D and
the aerodynamic distance dac. The lower and upper
bounds of the variation range of the parameters are
determined according to physically meaningful varia-
tions of the dimensional parameters of the blade. The
selected lower and upper bounds are given in Table 4.
First, the effect of the parameters’ variability is investi-
gated on the dynamics of the 3DOF model of the blade.
Then, the controllability of the pitch response is dis-
cussed.

The baseline values of the parameters of Table 2
are used to determine the dynamics of the 3DOF
model of the blade using numerical direct integration
in MATLAB. The simulation was performed for the
frequency range 20 = 0.5 ~ 6 with frequency step
df29 = 0.025. The simulation was performed for 8§00
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Fig.11 Response-frequency diagram of the steady-state dynam-
ics of pitch angle for different values of actuation force ampli-
tude Fy,. a 3D waterfall diagram of the amplitude—frequency

Table 4 Variation range of the non-dimensional parameters

Parameter Lowerbound Upper bound
dac -05 0.5
D —1.5 1.5

cycles at each frequency and the last 150 cycles are
used to ensure the steady-state response is considered.
Figure 12 shows the static deflection and the ampli-
tude of the first five harmonics of the pitch angle of
the blade. o and |«;| denote, respectively, the static
deflection and the amplitude of the ith harmonic of the
pitch response. The results show that there are some
resonant amplitudes of different harmonics related to
the natural frequencies of each degree of freedom. It is
observed that by increasing the rotating speed (excita-
tion frequency) §2¢, the magnitude of the static deflec-
tion of the pitch angle increases as expected. However,
it is explained later that the magnitude and sign of the
static deflection (pitch nose up or down) depend on the
values of the parameters d,c and D and also the rotat-
ing frequency. In addition, the amplitudes of the pitch
angle oscillations experience several resonances and
jumps in the neighbourhood of the natural frequencies.
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response; b static deflection of the pitch angle; ¢ 2D amplitude—
frequency diagram; d phase—frequency diagram

The jumps in the dynamic response of the pitch angle
are due to the nonlinearity of the system and are critical
in tuning the parameters of the structure.

To better understand the nonlinear response of
the pitch angle, the response obtained from numeri-
cal direct integration is compared with the response
obtained using CXA. Figure 13 compares the ampli-
tude of the first harmonic of the steady-state dynamic
pitch response of the 3DOF model obtained using the
CXA method and direct numerical integration in MAT-
LAB. This comparison clarifies the exact nonlinear
dynamic response of the pitch angle. The stability anal-
ysis on the analytical results obtained from the CXA
method has been undertaken using Lyapunov’s First
Theory of Stability. Unless the jump between two dif-
ferent stable branches is targeted for a special purpose,
the region of multiple stable solutions is avoided in
practical engineering systems. Besides, the existence
of unstable branches in addition to various bifurca-
tions generates different types of dynamic responses
that is mostly avoided in engineering structures. For
example, the results of Fig. 12 in the frequency range
£20 = 3.12to 3.5 shows that the amplitude of vibration
changes non-smoothly in this region. This is because
the system behaves with a variety of multi-frequency,
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Fig. 12 Static deflection, and amplitude of the first five harmonics of the dynamic response of the pitch angle for a range of excitation
frequency £2. g and |¢; | denote, respectively, the static deflection and the amplitude of the ith harmonic of the pitch response

quasi-periodic, and chaotic responses in this frequency
range. The time histories and phase diagrams of the
pitch response are given in Fig. 14 for three values
of dyc = —0.25,0, 0.25 at two different rotating fre-
quencies, 20 = 3,3.25. The results show that for

dae = —0.25 and dyc = O the pitch angle shows
periodic responses at both frequencies. However, for
d,c = 0.25, pitch angle has a periodic response at

20 = 3, while it behaves with a chaotic response at
£20 = 3.25. Various dynamic responses including peri-
odic, quasi-periodic, and chaotic responses at different
rotating frequencies are shown in Fig. 15. The results
of Fig. 13 can also be used to determine the desirable
operating range of the structure according to different
dynamic responses at various frequencies. Of course,
this decision depends on the application and design
criteria. For example, the frequency ranges §2p < 2.2,
2.7 < £290 < 3.1,and 29 > 3.8 are safe with respect to
undesired behaviours such as multiple stable solutions,
jumps, quasi-periodic responses, or chaotic dynamics.
However, despite a relatively high amplitude of vibra-
tion, an aircraft with variable rotating frequency might
avoid the range of 2.7 < £2p < 3.1 which has vari-
ous undesired dynamic responses. On the other hand,
aerospace applications with a constant rotating fre-
quency can benefit from high amplitude vibration for
2.7 < £2¢ < 3.1.

4.1 Controllability of the pitch response

Amplitude and phase of the pitch angle are important
features of the dynamics of the blade which are required
tobe controlled. Sects. 3.1 and 3.2 show that the aerody-
namic forcing/moment and the bend—twist coupling are
two important parameters in determining the phase of
pitch angle. Therefore, this section discusses the effect
of aerodynamic forcing and bend—twist coupling on the
phase of the pitch angle. The variations of two param-
eters, dyc and D, which determine, respectively, the
signs of aerodynamic force and bend-twist coupling,
are considered. For the other parameters, the baseline
values of Table 2 are used. The results in this section
are obtained using the 3DOF model of the helicopter
morphing blade including the aerodynamic loading.

To investigate the effect of these two parameters on
the phase of the pitch angle, three different cases are
considered: (a) D = 0, (b) dae = 0,and (¢) D # 0 &
dae # 0.

(@) D = 0. In this case, the bend—twist coupling
is neglected and the effect of d,c on the phase of the
pitch angle is studied in the absence of bend—twist cou-
pling. The aerodynamic force may have different signs
depending on the location of aerodynamic centre AC.
Accordingly, the aerodynamic forcing may have bene-
ficial or adverse effects on the pitch angle. Therefore,
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Fig. 14 Time history and phase diagram of the pitch response for £29 = 3 (a, b) and 29 = 3.25 (¢, d)

d,c, which indicates the distance between AC and RC,
plays significant role in defining the desired phase. The
appropriate d (i.e. the location of AC with respect to
RC) is selected to obtain a response that is in phase, out
of phase, or no oscillating response. The pitch angle of
the blade is obtained for the range of dyc = —0.5 ~ 0.5.
Figure 16 shows the static deflection and the ampli-
tude and phase of the first three harmonics of the pitch
angle. The results show that without any bend—twist
coupling in the blade dynamics, the phase of the pitch
angle varies in response to changes in the sign and
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value of dy.. At dyc = 0, no aerodynamic moment is
applied to the blade and therefore no pitching response
is observed. For d,. > 0, on the other hand, the pitch
angle oscillates with approximately 7 rad phase differ-
ence with respect to the pitch angle for dy. < 0.

(b) doe = 0. In this case, AC is located at RC
and the aerodynamic force will not be able to gener-
ate any moment to affect the pitch angle. Hence, the
only moment applied to the blade is due to bend—twist
coupling. Changing the sign of the coupling will affect
the amplitude and phase of the pitching response. For
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Fig. 16 The sensitivity of the dynamics of the system to variation of d,. for D = 0. ap, |e;|, and ¢, denote, respectively, the static
deflection, and amplitude and phase of the ith harmonic of the pitch response

d,e = 0, the effect of variation of bend-twist cou-
pling D on the dynamics of the pitch angle is shown in
Fig. 17. In the figure, ayp, |;|, and ¢, denote, respec-
tively, the static deflection, and the amplitude and phase
of the ith harmonic of the pitch response. The results of
the static pitch deflection illustrate that the blade would
pitch nose up and down, respectively, for negative and

positive values of D. It is also observed that the ampli-
tude of the first three harmonics of the pitch angle is
symmetric with respect to the coupling value D = 0. In
other words, changing the sign of the bend—twist cou-
pling in this case does not have any effect on the vibra-
tion amplitude of the pitch angle. On the other hand,
there is almost a difference of 7 rad between the phase
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of the first harmonic of the pitch responses obtained for be easily changed by flipping the orientation of fibres
negative and positive bend—twist coupling. The results in the composite spars at the design stage.

of Fig. 17 show that changing the sign of bend-twist (¢) D # 0 & dyc # 0. This case is more practical
coupling D determines the phase of the pitch angle if than the previous two cases, where both aerodynamic
the aerodynamic force is neglected. The sign of D can moments and the moments generated due to bend—-twist
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coupling affect the pitching response of the blade. The
dynamic behaviour of the system is not as straightfor-
ward as the previous two cases. Figs. 18, 19 and 20
show the pitch response of the system for different val-
ues of d,c and D at three different rotating frequencies,

20 = 1.5, 2, 3. The figures include the static deflec-
tion, vibration amplitude, and the phase of the pitch
angle. Figure 18 shows that the second harmonic of the
pitch angle is excited at rotating frequency 29 = 1.5.
Indeed, as £29 = 1.5 is equal to half of the natural fre-
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quency of the pitch angle, the second harmonic of the
pitch angle is excited and for some values of d,. and D
its amplitude even exceeds the amplitude of the primary
harmonic. Figure 18 also demonstrates that the varia-
tion of D for a fixed value of d,. has a small effect on the
static deflection and the amplitude of the first harmonic
of «. However, this effect is pronounced on the ampli-
tude of the 2nd and the 3rd harmonics of the pitch angle
at higher positive values of d,c. The results of the phase
of o show that D affects the phase of pitch response for
small magnitudes of d,.. This is because the effect of the
aerodynamic moments is reduced for low magnitudes
of d,. and the effect of D is strengthened. However,
the aerodynamic moments are stronger for higher lev-
els of dyc and the effect of D on the phase of the pitch
response is weakened. On the other hand, the varia-
tion of dy significantly affects the pitch response. Fig-
ure 18a shows that the blade will pitch nose up and
down, respectively, for positive and negative values of
dyc. The results of vibration amplitude of « in Fig. 18
illustrate that the aerodynamic moment is strengthened
by increasing the magnitude of d,c and the amplitude
of vibration increases. However, the amplitude of the
2nd harmonic is not significantly changed by the vari-
ation of negative values of d,.. That is, d, can also be
used to control the amplitude of the higher harmonics
of the pitch angle. It is also observed that the phase of
the pitch angle varies by changing the sign of dyc.
Figure 19 shows the pitch response of the system
for the variation of d,. and D at £29 = 2. Although
the significance of D at this frequency is greater than
at 29 = 1.5, the variation of D for a fixed value of
dyc does not significantly change the static deflection.
It is also shown that at this frequency, the variation of
D has a stronger effect on the amplitude and phase
of the pitch oscillations, particularly for positive val-
ues of dy.. Indeed, as the rotating frequency of the
blade approaches the natural frequency of the mov-
ing mass, the effect of the oscillation of the moving
mass on the pitch response becomes stronger. Accord-
ingly, the bend-twist coupling D plays a more signif-
icant role at this frequency. In contrast to the response
at 20 = 1.5, where the amplitude of the second har-
monic is relatively large with respect to the primary har-
monic, since £29 = 2 is not in the vicinity of any sub-
or super-harmonic of the natural frequency of the pitch
angle, the amplitude of the higher harmonics of the
pitch response is significantly smaller than its primary
harmonic. On the other hand, £29 = 2 is in the neigh-
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bourhood of the natural frequency of the moving mass.
Therefore, the higher acrodynamic forces at higher val-
ues of dy result in a resonant response of the moving
mass. Accordingly, the resonant energy transfer of the
moving mass to the pitch angle is increased for higher
values of bend—twist coupling D. Hence, the highest
vibration amplitudes of the pitch response are observed
at the corners of Fig. 19b—d. Similar to the results in
Fig. 18, the variation of the vibration amplitude of the
pitch angle due to changes in positive values of dy is
more significant than its negative values. The results of
the pitch response at £29 = 3 is shown in Fig. 20 for
variations in bend—twist coupling D and parameter d,.
The static deflection is function of both the magnitude
and sign of D and d,c. The results show that the bend—
twist coupling has its greatest effects on the dynamics
of the pitch angle at positive values of d,c. The results
in Figs. 18, 19, and 20 demonstrate that D and d, are
two significant determining factors in the dynamics of
the pitch angle. However, the effect of these two param-
eters on the pitch response may vary at different rotat-
ing frequencies. Although most of aerospace applica-
tions operate at constant rotating frequencies, there are
various applications such as unmanned aircraft that
work over a range of rotating frequency. Therefore, the
results of the analysis in this study can also be used to
find the safe and desirable operating range. Also, £2¢
denotes the rotating frequency that is nondimensional-
ized with respect to the lagging natural frequency w;.
Hence, $2¢ considers both the variability of w; and the
operating range of rotating frequency.

5 Conclusions

This study investigates the resonant passive energy bal-
ancing of a morphing blade with moving mass at the tip.
To this end, the dynamics of the blade was modelled by
a 3DOF discrete system in which the pitch angle, the
lagwise motion, and the displacement of the moving
mass are considered as the three degrees of freedom.
A parametric analysis was carried out on the dynamic
response of the 3DOF model of a morphing helicopter
blade. The dimensions and mechanical properties of the
Bo-105 blade with NACA23012 aerofoil section were
used to find the baseline for the study. The aerody-
namic coefficients are obtained using the experimental
results in the literature. The reduced-order model of the
rotor blade was used to study the controllability of the
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dynamic behaviour of the structure. The analyses and
the results obtained in this study are given as follows:

1. First, a simplified single-degree-of-freedom model
of the 3DOF system is studied to examine the
dynamics of the pitch angle in response to changes
in important parameters of the structure. The results
showed that the two parameters D, the bend—twist
coupling, and d,, the distance of AC to RC, play
significant roles in the dynamic response of the
pitch angle.

2. Then, neglecting the aerodynamic forces, the dyn-
amic response of the structure of the 3DOF model
was studied in response to variations in different
structural parameters.

— The aim of this study was to examine the
dynamic sensitivity of the structure to differ-
ent parameters. This can be used to appropri-
ately tune the structure of the rotor blade. For
example, the parameters of the structure can be
selected so that the natural frequencies of the
system are located within the desired rotating
speed.

— This helps the engineer use the resonant energy
of the system to reduce the required actuation
power.

— The results of this analysis showed that the tor-
sional natural frequency (i.e. the torsional rigid-
ity and the moment of inertia of the blade) can
change the location of torsional resonant fre-
quencies.

— Also, the natural frequency of the movable mass
has a significant effect on the resonances of the
pitch angle.

— The bend-twist coupling D is the other effec-
tive parameter that determines the resonant
pitch angle of the blade.

3. Finally, a physically meaningful range of variation
was considered for D and d,. and the effects of
the variations of each parameter were investigated
on the response of the 3DOF system including the
aerodynamic forces.

— Various dynamic responses of the structure
under study including periodic, multi-frequency,
quasi-periodic, and chaotic responses were
illustrated. These dynamic responses are impor-
tant in tuning the parameters of the structure, as

quasi-periodic or chaotic responses are avoided
in the system.

— The controllability of the pitching response was
discussed based on the results of the simulation.

— The results showed that the bend—twist cou-
pling D and the distance d,: between the aero-
dynamic centre AC and the rotating centre are
the two important parameters in determining
the static deflection, vibration amplitude, and
phase of the pitch response. However, other
structural parameters are used to tune the sys-
tem desirably.

Although the present study is mainly focused on the
dynamic analysis and parametric study of the morph-
ing helicopter blade, the results of this study can be
used in practical cases to improve the performance of
the aircraft and reduce the required actuation energy.
Having a linear resonant amplitude in the structure may
be dangerous. However, the nonlinear behaviour of the
structure restrains the amplitude of oscillations at the
desired fixed rotating frequency. In addition, the stabil-
ity analysis of the dynamic behaviour helps to better
understand the structure and avoid undesired dynamic
behaviours such as jumps, quasi-periodic response, or
chaotic behaviour.
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