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Multistable phenomenon have long been used in mechanism design. In this paper a subset
of unstable configurations of a smart structure model will be used to develop energy-
efficient schemes to reconfigure the structure. This new concept for reconfiguration uses
heteroclinic connections to transition the structure between different unstable equal-
energy states. In an ideal structure model zero net energy input is required for the recon-
figuration, compared to transitions between stable equilibria across a potential barrier. A
simple smart structure model is firstly used to identify sets of equal-energy unstable con-
figurations using dynamical systems theory. Dissipation is then added to be more repre-
sentative of a practical structure. A range of strategies are then used to reconfigure the
smart structure using heteroclinic connections with different approaches to handle
dissipation.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Many structures are designed to be multi-stable equilibrium systems, so-called compliant mechanisms such as bi-stable
mechanism and tri-stable mechanisms. These mechanisms store energy in some initial position and then release the stored
energy through motion to another stable position [1]. For example, a discrete truss model, which consists of two bars con-
nected by pin joints, has been investigated as a pseudo-bistable structure for morphing [2]. Others have investigated a thin-
walled bi-stable geometry from natural systems and origami design principles. Finite element analysis and experimental
results show the bi-stability of a reinforced silicone elastomer [3]. However, unstable equilibria could be considered to con-
nect different configurations, as presented by Guenther et al. [4]. Some special anisotropic patterning of structures can help
deal with instability [5]. Moreover, active control can be used to maintain the structure in an unstable state using an agent-
based approach, which controls the structure to suppress instability [6]. Such active control can in principle allow the use of
heteroclinic connections to transition a smart structure between unstable states.

A large number of engineering application have been investigated using multi-stable devices, for example an advanced
helicopter rotor blade has used them for morphing to generate additional lift-load [7]. An adaptive antennae has been
designed by synthesising compliant mechanisms to enable a morphing approach from a given curve into a target curve
[8]. In addition, some simple models have analysed the stability of a buckled elastic beam, using an applied a load as an
actuator for snap-through phenomenon [9], while experiment results show the detailed dynamics of the buckled beam as
.
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compared to numerical results [10]. Meanwhile, the properties of lightweight components in mechatronic devices can pro-
duce quick and precise movement or forces. A range of such components are designed and manufactured using smart mate-
rials, whose properties are controlled by external stimuli such as moisture, temperature, electric or magnetic fields [11,12].
There are a number of types of smart materials with various characteristics, such as shape memory alloys (SMAs),
temperature-responsive polymers (TMPs) and piezoelectric materials. Currently, a wide range of SMA actuators have been
successfully applied in low frequency vibration and actuation applications [13]. Furthermore, recent research shows that
structures made of shape-memory polymers can provide large deformation under active control [14,15]. Broad applications
of such smart materials can be found in the Aerospace, Energy and Marine sectors, particularly for energy harvesting, vibra-
tion control and structural health monitoring [16]. In addition, several unconventional applications have arisen, for example
a self-folding origami structure was presented, constructed using shape memory composites that could be activated with
uniform heating [17]. Moreover, a crawling robot has also been investigated which can fold itself from a flat sheet with
embedded electronics, such as shape-memory composites, and can transform itself into a functional machine [18]. A single
sheet can be reconfigured to desired shapes through multiple controllers by an optimised design [19].

In previous work, a simple model of a smart structure was presented by McInnes andWaters [20]. The model comprised a
two mass chain with three springs which were approximated to provide simple cubic nonlinearity. Then, dynamical system
theory was used to investigate the characteristics of this simplified system to identify both stable and unstable equilibrium
configurations, some of which were connected using heteroclinic connections. This cubic nonlinear model has also been used
to investigate vibrational energy harvesting through the use of stochastic resonance [21]. The cubic model is considered as a
simple mechanical system which can change its kinematic configuration between a finite set of stable or unstable equilibria.
The equal energy unstable equilibria are connected through heteroclinic paths in the phase space of the problem. Therefore,
in principle zero net energy is required to achieve transitions between these configurations in the absence of dissipation.
Numerical results illustrated that reconfiguration between unstable equilibria can in principle be energetically efficient com-
pared to transitions between stable configurations, which need to cross a potential barrier. In addition, a reconfiguration
method based on a reference trajectory and an inverse control method has been applied to this cubic model and then
extended to a more complex model for which it is difficult to generate heteroclinic connections numerically. It is envisaged
that being computationally efficient, the strategy could form the basis of real-time reconfiguration of smart structures. [22].

In this paper a more complex and realistic spring-mass model is developed to consider the differences between the cubic
approximation used in previous work and a real spring model with dissipation, which illustrates the possibility of using
heteroclinic connections to reconfigure real smart structures, expanding on Ref. [23]. Again, a set of equilibria can be found
and can in principle be connected through heteroclinic paths. Then, strategies are considered to deal with the dissipation
term. Two control methods are investigated, using an end-point control and an optimal control strategy. In addition, a bifur-
cation control strategy is investigated which allows the stability properties of the equilibria to be controlled, enabling stable
equilibria to become temporarily unstable and so connected by heteroclinic paths. Numerical results are presented to illus-
trate the control strategies developed.

2. Smart structure model

Consider a simply clamped smart structure model, which consists of a two mass chain connected by three linear springs
of stiffness ðk1; k2; k3Þ and natural lengths ðL1; L2; L3Þ, as illustrated in Fig. 1. It is assumed that the masses can only move in
the vertical direction. If the displacement of a mass is defined by xðx1; x2Þ, while the spring clamps are separated by 3d, it can
be shown that the spring lengths after deformation are described by
l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ d2Þ

q
ð1Þ

l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ d2Þ

q
ð2Þ

l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22 þ d2Þ

q
ð3Þ
Fig. 1. 2 degree-of-freedom bucking beam model with damping coefficient b.
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In order to investigate the characteristics of the system, it is assumed that the structure can initially be considered as a
Hamiltonian system (without dissipation) with a simplification of unit mass m. From Fig. 1, the Hamiltonian for this system
can then be defined from the kinetic and potential energy with spring natural length LðL1; L2; L3Þ through Eqs. (4) and (5)
Table 1
Stability

Poin

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
TðpÞ ¼ 1
2
ðp2

1Þ þ
1
2
ðp2

2Þ ð4Þ

Vðx; LÞ ¼ 1
2
k1ðl1 � L1Þ2 þ 1

2
k2ðl2 � L2Þ2 þ 1

2
k3ðl3 � L3Þ2 ð5Þ
with momentum coordinates pðp1; p2Þ associated with position coordinates xðx1; x2Þ.
However, for a realistic model dissipation must also be considered, which of course will destroy the Hamiltonian struc-

ture of the dynamics. Therefore, phase trajectories from one unstable equilibrium point cannot reach another equal-energy
unstable equilibrium point. In order to compensate for such dissipation, controllers need to be used to ensure that hetero-
clinic connections exist. Therefore, the dynamics of the problem can be extended by the addition of linear dissipation param-
eterised by b, as shown in Fig. 1.

The problem can now fully defined by a dynamical system of the form
_x1 ¼ p1 ð6Þ

_p1 ¼
ðL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ 1Þ

q
Þk1x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx21 þ 1Þ
q þ

ðL2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ 1Þ

q
Þk2ðx1 � x2Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
Þ

� bp1 ð7Þ

_x2 ¼ p2 ð8Þ

_p2 ¼
ðL3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22 þ 1Þ

q
Þk3x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx22 þ 1Þ
q �

ðL2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ 1Þ

q
Þk2ðx1 � x2Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
Þ

� bp2 ð9Þ
Then, using dynamical system theory to analyse the system defined by Eqs. (6)–(9), it can be shown that there exists a
number of both stable and unstable equilibria which may be connected in phase space. One such type of path is the hete-
roclinic connection, which requires that the stable and unstable manifolds of two equal-energy unstable equilibria are con-
nected. Solving Eqs. (6)–(9) for equilibrium solutions yields 13 equilibria for the parameter set, k1 ¼ k2 ¼ k3 ¼ 1, d ¼ 1,
L1 ¼ L2 ¼ L3 ¼ 2:5. The details of the equilibria are listed in Table 1.

Moreover, the stability properties of these equilibria can be determined from the Hessian matrix of the potential energy.
In the second derivative test for determining extrema of the potential function Vðx; LÞ, the discriminant D is given by
D ¼
@2V
@x21

@2V
@x1@x2

@2V
@x2@x1

@2V
@x22

������
������ ð10Þ
Through using the second derivative test discriminant [23], it can be shown that the system possesses 1 unstable equi-
librium E0 with a global potential maximum, 6 stable equilibria E1 to E6 with a global potential minimum and 6 unstable
equilibria E7 to E12 where the potential has a saddle, as can be seen in Fig. 2. The corresponding shapes of the structure
are shown in Fig. 3, which presents different configurations associated with each of the 13 equilibria. Meanwhile, it can
be seen from Table 1 and Fig. 2 that E0 has the highest potential V with each spring in compression while E7 to E12 are unsta-
ble equilibria which have only one spring in compression and the stable equilibria E1 to E6 have both springs extended.
properties of the 13 equilibria of 2 degree-of-freedom bucking beam model.

t ~x1 ~x2 V(potential) D Type

0 0 3.38 1.75 Maximum
1.48 �1.48 0.70 1.35 Minimum
�1.48 �2.96 0.70 1.35 Minimum
�2.96 �1.48 0.70 1.35 Minimum
�1.48 1.48 0.70 1.35 Minimum
1.48 2.96 0.70 1.35 Minimum
2.96 1.48 0.70 1.35 Minimum
0 2.29 1.13 �1.81 Saddle
2.29 2.29 1.13 �1.81 Saddle
2.29 0 1.13 �1.81 Saddle
0 �2.29 1.13 �1.81 Saddle
�2.29 �2.29 1.13 �1.81 Saddle
�2.29 0 1.13 �1.81 Saddle
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Fig. 2. Potential Vðx; LÞ and equilibria (6 stable equilibria E1 to E6, and 6 unstable equilibria E7 to E12). (a) 3D surface plot. (b) Contour plot.
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Fig. 3. Equilibria for a two mass chain with (a) maximum potential equilbria E0 (b) stable equilbria E1-6 and (c) unstable equilibria E7-12.The unstable
equilibria have equal potential V.

84 J. Zhang, C.R. McInnes /Mechanical Systems and Signal Processing 91 (2017) 81–92



J. Zhang, C.R. McInnes /Mechanical Systems and Signal Processing 91 (2017) 81–92 85
Using dynamical system theory, we can then generate the stable and unstable manifolds of the unstable equilibria to seek
possible connections between them [24]. For the conservative system, linearisation of Hamilton’s equations in the neigh-
bourhood of each equilibrium point yields pairs of positive and negative eigenvalues with the corresponding eigenvectors
for the stable and unstable direction us and uu associated with each eigenvalue. These eigenvectors us and uu are tangent
to the stable manifoldWs and the unstable manifoldWu in the neighbourhood of each equilibrium [20]. Therefore, the eigen-
vectors can be mapped to approximate the stable and unstable manifolds by integrating forwards or backwards from an
unstable equilibrium point te, defined by
Fig. 4.
betwee
ts ¼ te þ �us ð11Þ
tu ¼ te þ �uu ð12Þ
for �� 1 t ¼ ðx;pÞ 2 R4. While this method can be used to find heteroclinic connections between equal-energy unstable
equilibria, a means to stabilise the structure before and after such a reconfiguration must firstly be sought.

3. Bifurcation control

In previous work [23], a numerical search technique for reconfiguration using heteroclinic connections without dissipa-
tion was investigated. It was assumed that the instability of the equal-energy unstable equilibria could be compensated by
using active control. However, an alternative bifurcation control method may be considered if the natural length of the
springs L1�3 can be manipulated, for example if the springs are manufactured from an appropriate shape memory alloy. A
conservative Hamiltonian system is assumed initially, with compensation for dissipation considered later in Section 4.

A ‘ball on a hill’ model can be used to provide a schematic illustration of the proposed bifurcation control method, as
shown in Fig. 4. The potential energy of the ball depends on its position on the hill so that a heteroclinic can connection exist
between two hills (Fig. 4b). Fig. 4a shows the ball on the first hill, which is initially locally stable. Then through manipulating
the local shape of the first hill it becomes unstable to effect the heteroclinic connection to the second hill, which can sub-
sequently transition from unstable to locally stable, as shown in Fig. 4b and c.

Based on this simple illustrative model, a new reconfigurable strategy is investigated using the spring-mass smart struc-
ture model detailed in Section 2.

In order to illustrate this strategy directly, L2 is firstly manipulated and changed from 1 to 2.5 with L1 and L3 fixed. Initially
a large change in the spring natural length is considered for clarity of illustration; a smaller change will be used later. It can
be seen from Fig. 5 that the number of equilibria will change with an increase of L2, which is shown by the equilibria ~x1 at
different lengths of L2. Moreover, there are three invariant points (0,0), (

ffiffiffi
3

p
,

ffiffiffi
3

p
) and (�

ffiffiffi
3

p
, �

ffiffiffi
3

p
) whose locations are inde-

pendent of L2. For L2 ¼ 1 the equilibria E1 and E2 are stable, and the potential forms local minima at these locations, as shown
in Fig. 6. Then, if L2 is increased such that L2 P 2, the equilibria (

ffiffiffi
3

p
,

ffiffiffi
3

p
) and (�

ffiffiffi
3

p
, �

ffiffiffi
3

p
) became unstable and a heteroclinic

connection can be used to reconfigure the structure between these two equilibria, as shown in Fig. 7. After the reconfigura-
tion, L2 is finally decreased such that L2 ¼ 1 and the system becomes stable again. This scheme allows operation of the struc-
ture in a stable state, a transition to instability to reconfigure the structure, and then continued operation in another stable
state.

A transition using this scheme (without dissipation) is shown in Fig. 8. The coupling parameters are L1 ¼ 2 and L3 ¼ 2
with L2 switched from 2.5 to 1 to manipulate the stability properties of E1 and E2. Firstly, a small displacement is added
to the system in the local minimum potential well to demonstrate capture at the equilibrium point. This initial oscillation
of the system in the potential well at E1 with L2 ¼ 1 can be seen, followed by a transition to E2 with L2 ¼ 2:5 after the bifur-
cation and then a return to oscillation in the local minimum potential well at E2 with L2 ¼ 1.

In order to further explore the possibility of reconfiguring the smart structure using bifurcation control, a more complex
situation will now be considered. Figs. 2 and 5 show that the equilibria (

ffiffiffi
3

p
,

ffiffiffi
3

p
) and (�

ffiffiffi
3

p
, �

ffiffiffi
3

p
) became unstable when

L2 ¼ 2, but with the same potential energy as other saddle points such as (0;
ffiffiffi
3

p
). An iterative approach [25], can also be used

which divides a position coordinate, such as x1, into several steps with a desired increment, then the other position coordi-
nate x2 can be used to seek to minimise the potential energy of every step. Therefore, an ideal path can be generated on the
potential energy contour from (

ffiffiffi
3

p
,

ffiffiffi
3

p
) to (�

ffiffiffi
3

p
, �

ffiffiffi
3

p
) with L1 ¼ L2 ¼ L3 ¼ 2. This results in a series of connected hetero-
Schematic representation of bifurcation control (a) and (c) are different locally stable configurations of the structure (b) heteroclinic connection
n the two equal-energy unstable configurations.



Fig. 5. Bifurcation diagram for the spring-mass model. Projection of the location of the equilibria onto the x1 axis for L1 ¼ 2, L3 ¼ 2 and 1 6 L2 6 3. Solid
line: stable equilibria, dashed line: unstable equilibria.
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Fig. 6. Effective potential Vðx; LÞ with L1 = 2, L2 = 1 and L3 = 2. E1 and E2 are stable, E3 and E4 are unstable.
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clinic connections between (
ffiffiffi
3

p
,

ffiffiffi
3

p
) and (�

ffiffiffi
3

p
, �

ffiffiffi
3

p
), as shown in Fig. 9. Therefore, we can consider using the bifurcation

control method to reconfigure the structure in a more realistic way with a smaller change of the spring natural length such
that L2 switches from 2 to 1.3.



Fig. 8. Controlled transition from E1 at ð
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3

p
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ffiffiffi
3

p
Þ with bifurcation control. The coupling parameters L1 = 2 and L3 = 2 with L2 switched

from 2.5 to 1 to manipulate the stability properties of E1 and E2.
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Fig. 10 shows the transition (without dissipation) using this modified bifurcation control. The coupling parameters are
L1 ¼ 2 and L3 ¼ 2 with L2 switched from 2 to 1.3 to manipulate the stability properties of E1 and E2. Then, a small displace-
ment is again added to the system in the local minimum potential well to demonstrate capture at the equilibrium point. The
initial oscillation of the system in the potential well at E1 with L2 ¼ 1:3 can therefore be seen, followed by a transition to E2

with L2 ¼ 2 and then a return to oscillation in the local minimum potential well at E2 with L2 ¼ 1:3. In addition, the switch
process is a simple step change of L2 from 1.3 to 2, as shown in Fig. 11.

The bifurcation control scheme presented provides the possibility of reconfiguring smart structures using their instability,
but retaining stability for normal operating modes. Although the natural length of the spring is varied for illustration, we
could also consider additional parameters, such as the spring stiffness k or the spacing d between springs to reduce the vari-
ation of the length of the spring. The purpose of the numerical examples presented above is to demonstrate the character-
istics and utilisation of bifurcations in this type of nonlinear system. Therefore, an easily visualized means (e.g. natural length
of the springs) are used to achieve the reconfiguring process.
4. Controlled heteroclinic connections in a dissipative system

As noted earlier, dissipation needs to be considered for a realistic model where Eq. (4) and (5) show the total energy
W ¼ T þ V of the system is monotonically decreasing as _W ¼ �bðp2

1 þ p2
2Þ corresponding to the general condition

p1–0; p2–0. In order to proceed it will be assumed that each spring can now be manipulated with variations of the real
spring length DL by using smart materials such as shape memory polymers, so from Eqs. (7) and (9) it can be seen that
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_p1p1 �
ððL1 þ DL1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ 1Þ

q
Þk1x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx21 þ 1Þ
q p1 �

ððL2 þ DL2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ 1Þ

q
Þk2ðx1 � x2Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
Þ

p1 ¼ �bp2
1 ð13Þ

_p2p2 �
ððL3 þ DL3Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22 þ 1Þ

q
Þk3x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx22 þ 1Þ
q p2 þ

ððL2 þ DL2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ 1Þ

q
Þk2ðx1 � x2Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
Þ

p2 ¼ �bp2
2 ð14Þ
which can be written as
d
dt

ðT þ VÞ ¼ �bp2
1 þ

DL1k1x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ 1Þ

q p1 � bp2
2 þ

DL3k3x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22 þ 1Þ

q p2 þ
DL2k2ðx1 � x2Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
Þ
ðp1 � p2Þ ð15Þ
and is clearly a statement of conservation of power. If It is considered that the system is forced to be conservative then
dðT þ VÞ=dt ¼ 0, therefore, DL can be used to compensate for dissipation by continuous control. Alternatively, a simpler con-
trol strategy is to define a controller which can capture the phase space trajectory in the neighbourhood of the target equi-
librium point. The difference between the two methods can be seen in Fig. 12. The end-point control strategy provides an
easy way to reconfigure smart structures from some initial state to a target state, which uses the controller to compensate
the offset caused by dissipation in a planned control region, as shown in Fig. 12a. Conversely, the continuous strategy can be
controlled by constantly monitoring and controlling states during the reconfiguration of the smart structure, as shown in
Fig. 12b.
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4.1. End-point control

In order to ensure convergence to some equilibrium point ð~x1; ~x2Þ a Lyapunov function is defined such that
/ðx; LÞ ¼ 1
2
p2
1 þ

1
2
p2
2 þ

1
2
ðx1 � ~x1Þ2 þ 1

2
ðx2 � ~x2Þ2 ð16Þ
where /ðx; LÞ > 0 and /ð~x1; ~x2Þ ¼ 0. The time derivative of the Lyapunov function is clearly
_/ðx; LÞ ¼ p1ð _p1 þ ðx1 � ~x1ÞÞ þ p2ð _p2 þ ðx2 � ~x2ÞÞ ð17Þ

Then, substituting from the Eq. (7) and (9) the controller for L1, L2 and L3 can be defined as
L1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ 1Þ

q
k1x1

gp1 þ ðx1 � ~x1Þ �
ðL2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ 1Þ

q
Þk2ðx1 � x2Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
Þ

� k1x1
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L2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ 1

q
k2ðx1 � x2Þ gp1 þ ðx1 � ~x1Þ þ

ðL1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ 1Þ

q
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L3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22 þ 1Þ

q
k3x2

gp2 þ ðx2 � ~x2Þ �
ðL2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx1 � x2Þ2 þ 1Þ

q
Þk2ðx1 � x2Þ

ð
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ðx1 � x2Þ2 þ 1

q
Þ

� k3x2

0
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CA ð20Þ
for some control parameter g. It is noted that the system has 2 state variables x1 and x2, which can select two controllers
from L1, L2 and L3 as control variables to avoid singularities. For example, since k2ðx1 � x2Þ–0, k3x2–0 in the neighbourhood
of the required equilibrium point E10, L2 and L3 are selected as controllers in the neighbourhood of that point.

It can then be seen that / is monotonically decreasing such that
_/ðx; LÞ ¼ �ðgþ bÞðp2
1 þ p2

2Þ 6 0 ð21Þ

and so x ! ð~x1; ~x2Þ and p ! ð0;0Þ within the neighbourhood of target point.

An example of controlled heteroclinic connections for b ¼ 0:01 and b ¼ 0:05 are shown in Fig. 13 for a reconfiguration
between E9 and E10. To initiate the heteroclinic connection, a displacement along the unstable manifold of E9 is preformed
and the controller will be activated when the phase space path is in the defined neighbourhood R of E10 (g ¼ 3). The corre-
sponding controls L2 and L3 are shown in Fig. 14. It can be seen that the controls are only active when the phase space path is
in the end-point region of E10. Numerical results demonstrate that the control effort grows with increasing dissipation
parameter b. That is, the control region needs to be enlarged to fit the increasing dissipation parameter b as shown in Fig. 13.

4.2. Continuous control

For comparison with the end-point control strategy, a continuous control method is now investigated to approximate the
heteroclinic connection. This problem is revisited as a computational optimal control problem to determine the control his-
tories whichmeet the boundary conditions of the problem. In addition to satisfying the state boundary conditions, these con-
trol histories also need to minimise a performance index function. Then, the optimal tool PSOPT is employed to solve this
optimal control problem numerically using the direct method. PSOPT is coded in C++ by Becerra [26] and is free and open
source. The code can deal with many numerical optimisation problems, in particular with endpoint constraints, path con-
straints, and interior point constraints. Moreover, it can solve the non-linear programming (NLP) problem by using IPOPT,
which is an interior point method for large-scale problems.
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Fig. 13. Controlled transition from E9 at (1.732051,0) to E10 at (0,�1.73205) with the controller active in the neighbourhood of E10 with different
dissipation. Solid line: dissipation parameter b ¼ 0:01, dashed line: dissipation parameter b ¼ 0:05.

Fig. 14. Controlled transition from E9 at (1.732051,0) to E10 at (0,�1.73205) with the controls actuated through L2 and L3 in the neighbourhood of E10. (a)
Dissipation parameter b ¼ 0:01. (b) Dissipation parameter b ¼ 0:05.
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The system can be considered under quasi-static conditions, so that the energy required for each controller can be defined
as
E ¼ 1
2
kðDLÞ2 ð22Þ
where k is the spring stiffness and DL is variation of the spring natural length. Therefore, the performance index of the system
can be defined
J ¼
Z tf

0
ððDL1Þ2 þ ðDL2Þ2 þ ðDL3Þ2Þdt ð23Þ
where tf means the duration from initial condition to the final condition, then, we define conditions for a transition from the
unstable equilibrium E9 to E10 as
xð0Þ xðTÞ _xð0Þ _xðTÞ½ � ¼ 1:732 0 0 0
0 �1:732 0 0

� �
ð24Þ
The numerical results for dissipation parameters b ¼ 0:01 and b ¼ 0:05 are shown in Fig. 15. The corresponding controls
L1, L2 and L3 are shown in Fig. 16. It can be seen that the controls are symmetric about the point t ¼ T=2 as expected. More-
over, in general more energy is required to compensate for a larger dissipation parameter b, which means the range of the
controller becomes larger for the reconfiguration, as shown in Fig 16.



Fig. 15. Controlled transition from E9 at (1.732051,0) to E10 at (0,�1.73205) with the controller active under the continuous control method (dissipation
parameters b ¼ 0:01, 0:05).
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Fig. 16. Controlled transition from E9 at (1.732051,0) to E10 at (0,�1.73205) with the controls actuated through L1, L2 and L3 under the continuous control
method. (a) Dissipation parameters b ¼ 0:01. (b) Dissipation parameter b ¼ 0:05.
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In order to keep the structure model simple, some assumptions and simplifications were proposed to implement the
research, for example, the dissipation was assumed as linear relationship. The model used in this paper has some differences
with a real structural model, omitting material viscosity, time lag effects of the control. Through using this qualitatively sim-
ple model, new insights can be obtained on the use of heteroclinic connections. This simple model can be used to introduce
this new reconfiguration concept and provide insights for use in a more accurate high fidelity model [27]. Although the end-
point control method is easy, it needs an instantaneous control in the reconfiguration procedure. Besides, most importantly,
it may be difficult to find exact heteroclinic connections numerically in complex nonlinear dynamic systems. In contrast, the
continuous control method could provide a more smooth controlled transitions with less energy, but it may be computation-
ally intensive to determine. Therefore, a smart structure can be reconfigured from one unstable state to another through
choosing a suitable control maneuver from the end-point control and the continuous control method. In addition, the util-
isation of these two methods can be clarified for different systems, for example, the end-point method could be adequate for
lightly damped systems and the continuous control methods can provide satisfactory state trajectories with small changes in
control variables.

Moreover, a better reconfigurable strategy is used to combine bifurcation control and controlled heteroclinic connections,
which is expected to reconfigure real smart structures between stable states. For example, structures are assumed initially in
local stable states. Through performing bifurcation the local condition becomes unstable. Then, bifurcation is performed
again when end-point control generates a trajectory to the target equilibrium point. This represents a computationally effi-
cient way to achieve reconfiguration for smart structures between two different equilibria positions with less energy.
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5. Conclusion

A multi-stable smart structure has been modelled using a simple, representative spring mass chain. In general, such a sys-
tem has a set of stable states separated by unstable, some with equal energy. Therefore, smart structures can in principle be
reconfigured by using their instability. After changing the characteristics of the system by using bifurcation theory, these
unstable configurations will be used to develop energy-efficient schemes to reconfigure the smart structure. In principle,
such reconfigurations do not require the input of energy, other than to overcome dissipation in the system. Then, two ways
to reconfigure smart structures have been presented to compensate for damping in the reconfiguring. It was found that the
transition between unstable equilibria can be achieved through manipulation of the natural length of the springs in the
model with linear dissipation, which is assumed to be achieved with a suitable active material. While the model used is sim-
ple, it provides insights into the problem which can be exploited to develop the concept towards the reconfiguration of real
smart structures.
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