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Linkage mechanisms are perhaps the simplest mechanical structures in engineering, but
they can exhibit significant nonlinearity which can in principle be exploited. In this paper
a simple smart structure model is developed based on such nonlinearity to investigate the
reconfiguration of a four-bar mechanism through phase space connections. The central
idea is based on heteroclinic connections in the mechanism phase space between equal-
energy unstable equilibria. It is proposed that transitions between such equal-energy
unstable (but actively controlled) equilibria in principle require zero net energy input,
compared to transitions between stable equilibria which require the input and then dis-
sipation of energy. However, it can be difficult to obtain such heteroclinic connections
numerically in complex dynamical systems, therefore an objective function approach is
used to seek transitions between unstable equilibria which approximate true heteroclinic
connections. The instability inherent in the model is therefore actively utilised to provide
energy-efficient transitions between configurations of the mechanism. It will be shown
that the four-bar mechanism then forms the basis for an elastic model of a smart buckling
beam.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A linkage mechanism is a simple mechanical device with the purpose of transferring force from an input to an output [1].
Some mechanisms have been developed that possess two or more equilibrium configurations, so-called bistable and tris-
table mechanisms. These mechanisms use external energy input to transition from one stable position to other stable
positions over a potential energy barrier [2,3]. Such ingenious mechanisms have broad application in practical engineering,
and research continues to improve their performance [4]. Meanwhile, multiple equilibria are widespread in a range of other
phenomenon, not only those involved in mechanical processes but also ranging from electronics to living cells. These
systems have the fundamental feature that once an input reaches a certain threshold value, the system switches to and stays
in the corresponding state even when the input is removed [5,6].

The theory of mechanisms with multiple equilibria can be employed to investigate practical structures, such as a con-
tinuous elastic bistable beam model that has been developed by Camescasse et. al [7]. Nonlinear theory was firstly used to
analyse a numerical model and then employed to verify the validity of the proposed continuous model [8]. Cleary and Su
nical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom.
ang).
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have considered that a bistable buckled beam can be actuated by a moment input and proved that their theoretical model
provides guidelines to design bistable compliant mechanisms [9]. Others have been inspired by origami design principles
and natural phenomenon to develop bistable geometries [10] and so delivered a morphing process which can reduce the
amount of external work to deploy a morphing structure [11]. Meanwhile smart materials, which can change their prop-
erties under external stimuli such as stress, temperature, electric or magnetic fields, for example shape memory materials
(SMM) [12], can be used to design and manufacture smart structures [13]. Hogg and Huberman have investigated active
control of such structures comprised of smart materials using an agent-based approach [14]. More recently a new smart
structure concept has been presented, which can fold itself into a desire shape with embedded sensors and actuators [15].

In previous related work, McInnes and Waters considered reconfiguration of smart structures using phase space con-
nections [16]. A simple smart structure model was presented, constructed from two masses and three springs clamped at
both ends. The model was approximated with cubic nonlinearities to investigate the key characteristics of the system. A set
of both stable and unstable equilibrium configurations were identified with a subset of equal-energy unstable configura-
tions found. A novel method was then proposed to reconfigure the smart structure between these equal-energy unstable
states using heteroclinic connections in the phase space of the problem. It was assumed that active control could maintain
the structure in each unstable state [17]. This cubic nonlinear model has also been used to investigate vibrational energy
harvesting through the use of stochastic resonance [18].

A reconfigurable smart model is considered here as a mechanical system which has the ability to change its kinematic
configuration between a finite set of stable or unstable equilibria. Heteroclinic connections are then employed to achieve a
reconfiguration of the structure by connecting the unstable equilibria that lie on the same energy surface in the phase space of
the problem. In principle, zero net energy is required to achieve transition between these unstable equilibria, unlike transitions
between stable equilibria which require the addition of and then dissipation of energy [16]. Moreover, a computational optimal
control method can be used to determine the required control time histories under a set of desired boundary conditions with a
suitable performance index function [19]. In addition, a reconfiguration method based on a reference trajectory and an inverse
control method has been applied to a simple double mass-spring model of a smart structure [20].

In this paper, a classical four-bar mechanism with rigid linkages and torsional springs is firstly investigated. The rigid
model demonstrates the possibility of reconfiguring the mechanism between two unstable equilibria. Moreover, the rigid
four-bar mechanism allows a simple controller to be developed to actively stabilise the unstable configurations of the
structure. Then, a single axial spring is used to substitute for one rigid bar to develop a pseudo-rigid model, which illustrates
interesting complexities over the rigid model. An approximation of the trigonometric terms in the governing equations is
then used to construct a simple mathematical model which is employed to illustrate the calculation of heteroclinic con-
nections and active control.

Lastly, a purely elastic model with torsional springs and axial springs for linkages is developed which allows bending,
stretching and compression. An energy-based method is used to verify the fidelity of the model relative to a flexible
buckling beam. The paper therefore uses the four-bar mechanism and intermediate pseudo-rigid model as a means of
developing a model of an actively controlled buckling beam. The fundamental properties of the flexible model are then
discussed using nonlinear systems theory to determine which equilibria can be connected through the phase space of the
problem. In particular, paths in the phase space which join an equilibrium point to itself (homoclinic connections) and two
different equilibrium point (heteroclinic connections) are sought. Again, heteroclinic connections are considered as a means
of enabling energy-efficient transitions between unstable configurations of the reconfigurable elastic structure. Some nu-
merical results are then presented to elaborate on the feasibility of this reconfiguration manoeuvre.
2. Rigid four-bar model

The motion of a link mechanism can be modelled using standard kinematic equations, which can be derived from Ref.
Fig. 1. Four-bar mechanism with torsional springs model.



Table 1
Properties of the four-bar mechanism model.

Variable Value Description

r1 12.70 (cm) Link 1 length
r2 13.97 (cm) Link 2 length
r3 13.97 (cm) Link 3 length
r4 13.97 (cm) Link 4 length
κ1 0.164 (N-m/rad) Spring constant
κ2 0.164 (N-m/rad) Spring constant
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[1]. A four-bar linkage is a basic mechanism which has only one degree of freedom, as shown in Fig. 1. The properties of this
mechanism, such as range of movement, is based on the link lengths. In this paper, the nonlinearity of a four-bar linkage is
discussed with specified dimensions, listed in Table 1, which were used in Ref. [3]. The input link can be chosen as link 2,
link 3 or link 4, however, link 3 is selected here as the input link. Joint 2 and joint 3 are then assumed to have ideal torsional
springs so that the system can be considered as conservative without friction. Therefore, the torsional springs can store or
release energy when the mechanism moves. This re-distribution of (conserved) energy provides one or more distinct
equilibrium positions (both stable and unstable), which is the basis for the following analysis on reconfiguration. The initial
configuration of the mechanism is that link 3 is parallel to link 1, denoted by θ =03 . Following the development of Ref. [2] the
energy of the system can then be found from

∑ κ ψ=
( )

V
1
2 1

n

i i
0

2

where n is the numbers of torsional springs, V is the potential energy of the system, κi is the torsional spring constant of ith
torsional spring and ψi is the angle of deflection of the bar. For each angle of deflection of the specific system shown in Fig. 1
it can be seen that

( ) ( )
( ) ( )
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where the subscript’0’ indicates the initial angle of the rigid bar and link 1 is fixed in the horizontal direction as shown in
Fig. 1. The total potential energy of the mechanism based on two torsional springs at joint 2 and joint 3 can then be written
as
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2
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2

The moments required to keep the mechanism in a particular position can be obtained through the principle of virtual
work [21]. The moment can be considered as the first derivative of the potential energy function with respect to the angle of
the input link, so that the potential energy can be considered as

∫ θ=
( )θ

θ

V Md
40

and by considering link 3 as the input link, then taking the derivative of Eq. (4) the moment M3 is found from

θ
=
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The initial configuration of the mechanism is that link 3 is parallel to link 1, i.e. θ =030 . Therefore, the moment defined by
Eq. (5) can be rewritten as
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Using the kinematics of the link mechanism [1], the derivatives in Eq. (6) can be expressed using the additional re-
lationships
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Fig. 2. Energy and moment for the rigid four-bar mechanism.
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and
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The equilibrium positions of the mechanism can then be determined from the first derivative of the total potential
energy when it is null. The stability of these equilibrium positions can also be determined by considering the sign of the
second derivate of the potential energy. Any positions corresponding to local minima (local maxima) are stable (unstable)
equilibrium points.

Some characteristics of the system will now be considered. The dimensions of four-bar mechanism model are again shown
in Table 1, where the model is a symmetric systemwith torsional springs at joints B and C only. The total potential energy of the
torsional springs is shown in Fig. 2. It can be seen that there are two unstable equilibrium positions and three stable equilibrium
positions in this symmetric model, listed in Table 2. The corresponding shape of the four-bar mechanism can be seen in Fig. 3,
which shows one torsional spring in compression while the other is extended in the unstable equilibrium positions.

In addition, a bifurcation diagram can be constructed through using different ratios between κ1 and κ2, as shown in Fig. 4.
Again, the number and position of the equilibria can be modified based on the free parameters of system.

A transition from E1 to E2 is now considered as an example to illustrate the method whereby equal-energy unstable
configurations can be connected. The model is again considered to be a conservative system with the simplification that it
has unit mass. We can now define the problem by a dynamical system of the form

θ ω̇ = ( )93 3

ω κ ψ
ψ
θ

κ ψ
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Due to numerical error (and practically since the transition is between unstable equilibria) active control is required,
which captures trajectories in a neighbourhood of E2. The system has only one degree of freedom, so that only a simple
controller is required. Here, the torsional spring at joint 3 is used as a controller, where it is assumed that the spring is
fabricated from a suitable material, such as a shape memory alloy. In order to ensure convergence to some required
equilibrium point θ̃3 a Lyapunov function [22] will be defined as

( )( )ϕ θ ω ω θ θ= + − ˜
( ),

1
2

1
2 113 3 3

2
3 3

2

Table 2
Equilibrium points and corresponding potential energy.

Point θ3 (deg) V (Potential) Type

E0 0 0 Stable
E1 �26.83 0.21844 Unstable
E2 26.83 0.21844 Unstable
E4 �92.60 0.1687 Stable
E5 92.60 0.1687 Stable



Fig. 3. Shape of the four-bar mechanism in equilibrium positions.

Fig. 4. Bifurcation diagram for the four-bar mechanism, solid line: stable equilibria, dashed line: unstable equilibria.
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where ϕ θ ω( )>, 03 3 and ϕ θ( ˜ )=,0 03 . The time derivative of the Lyapunov function is clearly

( )( )( )ϕ θ ω ω ω θ θ̇ = ̇ + − ˜ ( ), 123 3 3 3 3 3

Then, substituting from the Eq. (10) the controller for κ2can be defined as
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for some control parameter η. It is noted that ψ ≠ψ
θ

0d
d3

3

3
in the neighbourhood of the required equilibrium point θ̃3. It can then

be seen that ϕ is monotonically decreasing such that

( )ϕ θ ω ηω̇ = − ≤ ( ), 0 143 3 3
2

and so θ θ→ ˜3 3 and ω →03 within the neighbourhood of E2.
In order to simulate the transition from E1 to E2 a small perturbation of the state variable is used to begin the transition

towards E2. The transition from E1 to E2 can be seen in Fig. 5, where the controller ensures capture and stabilisation at E2.
The corresponding control time history is shown in Fig. 6, which uses κ2 as the control with fixed κ1 while the corresponding
geometry of the transition process can be seen in Fig. 7. These results demonstrate that the controller can compensate for
errors to generate a path between two unstable equilibrium points for this simple rigid bar system.



Fig. 5. Variation of θ3 during the transition from E1 to E2.

Fig. 6. Control in the neighbourhood of E2 actuated through the parameter κ2.

E1E2

E0

Fig. 7. Kinematics of the transition process.
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Fig. 8. Pseudo-rigid model with a single axial spring.
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3. Pseudo-rigid four-bar model

Building on the rigid four-bar mechanism from Section 2, an approximate flexible model can now be considered to
investigate the effect of elastic bars, shown in Fig. 8. The middle rigid bar is now substituted by an axial spring with two
torsional springs now at both ends.

3.1. Pseudo-rigid model

Due to the elastic bar, the pseudo-rigid four-bar mechanism is now a two degree-of-freedom system. Two angles are now
utilised as the state variables, and the torsional springs used as controllers. If the angles of the two rigid bars are defined by
θ (θ θ,1 2), while the span of the mechanism is d and the length of each rigid bar is r, as shown in Fig. 8, it can be demon-
strated that the axial spring has lengthl, which with deformation, is given by

( ) ( )( ) ( )θ θ θ θ= − + + − ( )l d r rcos cos sin sin 151 2
2

1 2
2

Firstly, the model is again considered to be a conservative system with the simplification that it has unit mass. The free
parameters of the model are now the axial spring stiffness k and natural length l0, the torsional spring stiffnessκ κ κ( ),1 2 and
initial (undeflected) angles θ10,θ20. The Hamiltonian for this model can be defined from the kinetic energy and potential
energy with a simplification of unit moment of inertia through Eqs. (16) and (17) as

( ) ( )ω ω ω( )= + ( )T
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2

1
2 161

2
2

2

( ) ( ) ( )θ κ κ θ θ κ θ θ( )= − + − + − ( )V k l l,
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2 171 1 10

2
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2
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2

with angular velocity coordinates are ω1 and ω2. We can now fully define the problem by a dynamical system of the form

θ ω̇ = ( )181 1

( ) ( )ω κ θ θ
θ

̇ = − − − −
( )

k l l
dl

d 191 1 1 10 0
1

θ ω̇ = ( )202 2

( ) ( )ω κ θ θ
θ

̇ = − − − −
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k l l
dl

d 212 2 2 20 0
2

Here, the aim of the pseudo-rigid model is to understand how heteroclinic connections can be found for a two-degree-
of-freedom system, to enable such connections to be found for the fully elastic model in Section 4. Therefore, in order to
capture the essential dynamics of the model, but to keep the model tractable, Taylor expansions are used to substitute for
Table 3
Equilibrium points with corresponding potential energy.

Point θ1 θ2 V D (1�10�6) Type

E0 0 0 1.25 0.9047 Stable
E1 44.38 44.3811 0.8 �0.1705 Unstable
E2 �44.38 �44.3811 0.8 �0.1705 Unstable
E3 �34.11 34.1116 0.4278 0.3932 Stable
E4 34.11 �34.1116 0.4278 0.3932 Stable



Fig. 9. Potential θ κ( )V , and equilibria (3 unstable equilibria E0, E1 and E2, and 2 stable equilibria E3 and E4).
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trigonometric function using Eqs. (22) and (23) as

( )θ θ θ θ= − + ( )osin
6 22

3
5

( )θ θ θ= − + ( )ocos 1
2 23
2

4

Then, dynamical system theory can be used to investigate the characteristics of this simplified smart structure model
[22]. It will be shown that the system defined by Eqs. (18)–(21) has a number of equilibria which are both stable and
unstable and may be connected in the phase space of the problem. Again, heteroclinic connections can be found which
requires that the stable and unstable manifolds of the two unstable equilibria are connected. Solving Eqs. (19) and (21) for
equilibrium conditions yields five equilibria for the parameter set, κ1¼κ2¼κ¼1 N m/rad, d¼15 cm, l0¼10 cm, r¼5 cm,
k¼1 N/m. The location of the equilibria are listed in the Table 3.

Then, the Hessian matrix of the potential energy can be used to test the linear stability properties of these equilibria. In
the second derivative test for determining extrema of the potential function θ κ( )V , , the discriminant D is given by

θ θ θ

θ θ θ

=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ( )

D

V V

V V

24

2

1
2

2

1 2

2

2 1

2

2
2

According to the second derivative test discriminant, it can be determined that the system possesses 1 unstable equi-
librium point E0, where the potential has a global maximum, 2 unstable equilibria E1–E2 where the potential has a saddle
and 2 stable equilibria E3–E4 where the potential has a global minimum, as can be seen in Fig. 9.

3.2. Numerical solution

In previous work heteroclinic connections were used to reconfigure a simple smart structure model between two un-
stable equilibria which lie on the same energy surface [16]. In principle, the structure could be reconfigured between these
two unstable equilibria without work being done. To find heteroclinic connections, dynamical theory can be used with Eqs.
(18)–(21) firstly linearised in the neighbourhood of each equilibrium point to yield their associated eigenvalues and ei-
genvectors. These stable and unstable eigenvectors us and uu are tangent to the stable manifold Ws and the unstable
manifold Wu corresponding to the eigenvalues λ¼�1 and λ¼þ1, respectively. Therefore, integrating forwards or back-
wards from an unstable equilibrium point, the eigenvectors can be mapped to approximate the stable and unstable
manifolds. The initial conditions in the neighbourhood of each equilibrium point θ=( ˜ )t , 0e for forward and backward



Fig. 10. Heteroclinic connection between E1 and E2 with the projection of the phase space onto the configuration space shown (note the perpendicular
crossing of Θ =01 ).
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integration can be defined as

= +ϵ ( )t t u 25s e s

= +ϵ ( )t t u 26u e u

for ϵ≪1, θ ω=( ) ∈t R, 4 and where θ̃corresponds to the location of the appropriate equilibrium point.
Due to the sensitivity of the problem, phase trajectories emerging from one unstable equilibrium point will not reach the

other unstable equilibrium precisely. To compensate, the symmetry of the problem can be used to search for an accurate
heteroclinic connection. The symmetric case κ κ κ= =1 2 will now be considered so that the ratio κ k/ can be manipulated to find
an ideal heteroclinic connection. Considering the symmetry of the problem, a coordinate transformations can be used to
rotate the coordinate axes (θ θ,1 2) anticlockwise

θ
θ

Θ
Θ

= −
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⎝⎜
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⎠⎟
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2

1 1
1 1 27

1

2

1

2

In this new coordinate system, the equations of motion can be obtained to find a heteroclinic connection [16]. The system
is now symmetric about the axes Θ =01 and Θ =02 and the unstable manifold of E1 is the symmetric with the stable manifold
of E2. Therefore, a heteroclinic connection between E1 and E2 must be perpendicular to the Θ =01 axis, which means Θ̇ =02 (or
less than some cut-off) on crossing the axis and so the heteroclinic connection will have a mirror image under Θ Θ→ −2 2, as
shown in Figs. 10 and 11.
Fig. 11. Transformed coordinates Θ1 and Θ2 for a heteroclinic connection between E1 and E2.



Fig. 12. Value of Θ̇2 at the first crossing of the unstable manifold of E1 with the Θ2 axis, with increasing parameter ratio κ k/ .
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Numerically, it is found that for κ <k/ 1, Θ̇2 is sufficiently small for an approximate heteroclinic connection to exist, as
shown is Fig. 12. Then when κ ≈k/ 1.7, a heteroclinic connection exists, irrespective of the value of k, as is clearly seen in
Fig. 12. This demonstrates that for each value of k there is a value of κ which admits a heteroclinic connection. The het-
eroclinic connection can also be seen in Figs. 13 and 14, which is shown in the original untransformed coordinate axes
(θ θ,1 2).

While this method is suitable for the relatively low order problem represented by the pseudo-rigid four-bar model, other
methods must now be sought for the more complex fully-elastic four-bar model.
4. Fully-elastic four-bar model

4.1. Modelling and analysis

In order to further explore the possibility of reconfiguring smart structures using heteroclinic connections, a more
complex fully elastic model will now be considered, building on the two-degree-of-freedom model in Section 3. A buckled
beam is now assumed to be divided into three linear axial springs with unit mass and four torsional springs considered, as
shown in Fig. 15. While this represents a fully elastic model of the four-bar mechanism, it also clearly represents an ap-
proximate model of a buckling beam. It has been shown that the former model in Section 3 admits families of heteroclinic
connections in the phase space of the problem. This more complex problem greatly increases the number of equilibria in the
Fig. 13. Uncontrolled heteroclinic connection between E1 and E2 in the original untransformed coordinate axes (θ θ,1 2).



Fig. 14. Untransformed coordinates θ1 and θ2 for an uncontrolled heteroclinic connection between E1 and E2.

Fig. 15. Fully elastic four-bar mechanism/buckling beam model.
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system and the difficulty of finding all exact equilibria by purely numerical means. Only a subset of the large number of
equilibria will therefore be used to illustrate the properties of the system and seek heteroclinic connections between two
unstable equilibria.

In Fig. 15, the distance between two ends of the structure is denoted by d. The length of the three springs are denoted by
l1, l2 and l3 with corresponding stiffness k1, k2 and k3 respectively. Considering each of these springs as links, θ1 and θ2 are the
angles of spring 2 and spring 3 with respect to the horizontal with torsional stiffness κ1 and κ2. Finally, θ3 and θ4 are the
angles of spring 2 and spring 3 respect to spring 1 with the torsional stiffness κ3and κ4. This new model of a flexible four-bar
link is a four degree-of-freedom system with two constrained points B (x1, y1) and C (x2, y2), with A the origin point. The
angles can therefore be defined as

θ =
( )

− y
x

tan
281

1 1

1

θ =
− ( )

− y
d x

tan
292

1 2

2

θ = ( ) ( )− v vcos , 303
1

1 2

θ = ( − ) ( )− v vcos , 314
1

1 3

where v1, v2 and v3 denote the axial direction vectors of the springs, as shown in Fig.15. The deformation of the springs can
therefore be defined as

∆ = − ( )vl l 321 1 1

∆ = − ( )vl l 332 2 2

∆ = − ( )vl l 343 3 3
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Again, this fully elastic model is considered to be a conservative system. The potential energy can then be defined as

κ θ κ θ κ θ κ θ= + + + + ∆ + ∆ + ∆ ( )V k l k l k l
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2

1
2

1
2

1
2

1
2

1
2

1
2 351 1

2
2 2

2
3 3

2
4 4

2
1 1

2
2 2

2
3 3

2

where κ is the torsional spring constant, k is the axial spring constant.
Established methods can now be employed to select the appropriate spring constants for the model using geometric and

material parameters, according to the following [23]

κ=
( )

EI
l
2

36eff

= ( )k
CAE

l 37

where E is the equivalent elastic modulus, I is the equivalent cross-sectional moment of inertia, leff is an effective length, A is
the equivalent cross-sectional area and l is length of the axial spring. Eqs. (36) and (37) present a direct relationship between
the basic material parameters of a continuous beam and the model parameters so that it is possible to construct a practical
purely elastic model with the actual material parameters. The potential energy can then be defined as a function of E l, eff as

( )= ( )V f E l l, , 38eff

for some functional relationship f . Eq. (38) provides a relationship between the potential energy and basic material
properties, so that these parameters can be selected to construct a reasonable fully elastic model as described in Section 4.2
below.

4.2. Euler–Bernoulli beam model

The Euler–Bernoulli equations for an elastic buckled beam are now used to evaluate the spring model discussed above. It
is known that the first and second buckling shapes are given by
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402 2

respectively, where N is the first positive solution to ( )=N Ntan /2 /2 and a1 and a2 are constants which can be determined
through the method discussed in Ref. [24]. Note that the y is the displacement of a beam element from the x-axis.

Although more mode shapes could be used, the first two buckling modes provide a good approximation. Fig. 16 depicts
the first two modes of the buckled beam for each model shape corresponding to positive (solid line) and negative (dash line)
values of a1 and a2.

The Euler–Bernoulli can now be used to optimise the selection of the free parameters of the model to best represent a
true buckling beam.

4.3. Energy analysis [25]

The deformation energy of the beamwill now be used to compare the approximation between the Euler–Bernoulli beam
model with the elastic beam model of Section 3.1. This deformation energy is defined in Cartesian coordinates and includes
Fig. 16. Buckling modes of a clamped – clamped buckling beam.



Fig. 17. Bending energy based on effective length which is used to approximate the torsional springs.
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two parts, the bending energy and the compression energy. The bending energy of the Euler–Bernoulli beam is defined by

∫≃ ′ ( ) ( )
′U

EI
y x dx

2 41b

L

0

2

where I is the area moment of inertia of the beam, L is the compressed beam length (distance between clamping points), E is
the modulus of elasticity, x is the horizontal axis distance along the beam and y is the beam vertical displacement.

The compressive energy in the beam can be calculated directly from Hooke's Law as

( ) ∫
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− + ′( )

( )

⎡
⎣⎢

⎤
⎦⎥

U
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L
0 0

2
2
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2

where A is the cross-sectional area of the beam and L0 is the undeformed beam length.
Returning to Eq. (36), we can seek a more accurate elastic spring model through comparison with the Euler–Bernoulli

model. Therefore, the purely elastic model can be modified by changing the effective length leff to matching the potential
energy which is calculated in the Euler–Bernoulli model. Fig. 17 depicts the bending energy with increasing effective length,
while the red line is the energy of the first mode of the Euler beam model. From Fig. 17, the approximate value of the
effective length can be selected as 1.7, which will be used to define a modified fully elastic model.

The comparison between the elastic spring model and the Euler–Bernoulli is shown in Fig. 18 for the energy of each
mode, where it can be seen that the first mode error is smaller than the second mode error. The deformation energy error of
Fig. 18. Energy comparison between the fully elastic spring model and Euler–Bernoulli beam model. Ub is the bending energy, Uc is the compressive
energy, U¼UbþUc.
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the first mode is approximately 3%, while the deformation energy error of second mode is approximately 17%. Therefore, the
fully elastic spring model can be considered as a simplified model for a continuous beam with relatively accurate
approximation.

4.4. Numerical validation

In order to explore the possibility of reconfiguring this new model, dynamical system theory can again be used to
investigate its characteristics. Firstly, the model is again considered to be a conservative system with the assumption of unit
mass. From Fig. 15, the Hamiltonian for this two mass model can then be defined from the kinetic and potential energy
through Eqs. (43) and (44) as

( ) ( ) ( ) ( )( )= + + + ( )pT x x y y
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Now it can be described by a Hamiltonian ( )= ( )+ ( )x p L p x LH T V, , , with the set = { }x x x y y, , ,1 2 1 2 and the corresponding
set of momentum = { }p p p p p, , ,1 2 3 4 . We can now fully define the problem by a dynamical system of the form

̇= ( )x p 45

̇= ( ) ( )p g x x y y, , , 461 2 1 2

with momentum coordinates p and for some functional relationshipg . It will be shown that the system defined by Eqs. (45)
and (46) again has a large number of equilibria which are both stable and unstable and may be connected in the phase space
of the problem. Although there are many equilibria in the system, considering the complexity of the problem (with tri-
gonometric functions), it is difficult to locate all of the equilibria. Therefore an optimisation algorithm is now used to find
some typical equilibria which are denoted as equivalent to the first mode and second mode of an Euler–Bernoulli beam, as
shown in Fig. 19.

Linearisation of Hamilton's equations in the neighbourhood of each equilibrium point can now be used to determine the
linear stability of these equilibria according to their eigenvalues λ ( = − )j 1 8j . A set of stable equilibria are expected with
conjugate imaginary eigenvalues and a set of unstable equilibria are expected with real eigenvalues of opposite sign [22].
The corresponding parameters can be seen from Table 4 where E0 is an unstable equilibrium, where the potential has a
global maximum; E1 and E2 are stable equilibria where the potential has a local minimum; E3 and E4 are unstable equilibria
where the potential has saddles.
Fig. 19. Corresponding shape of fully elastic model in equilibrium positions.



Table 4
Stability properties of the 5 equilibria of the fully elastic model.

Points E0 E1 E2 E3 E4

x1 3.33 2.64 2.64 4.07 4.07
y1 0 4.07 �4.07 �2.20 2.20
x2 6.67 7.36 7.36 5.93 5.93
y2 0 4.07 �4.07 2.20 �2.20
λ1,2 70.95i 70.86i 70.86i 70.77i 70.77i
λ3,4 70.55i 70.54i 70.54i 70.55i 70.55i
λ5,6 70.54 70.14i 70.14i 70.55i 70.55i
λ7,8 70.35 70.40i 70.40i 70.096 70.096
V 1.25 0.36 0.36 0.56 0.56
Type Saddle Min Min Saddle Max
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Since the Hamiltonian of the system is constant, and formed by the potential and kinetic energy V and T, the volume of
phase space in R8, and its projection to configuration space in R4, is constrained by the requirement that T (p) 40. Since the
unstable equilibria E3 and E4 lie on the same energy surface, we can assume that in principle a heteroclinic connection
between these two equilibria may exist so that the structure can be reconfigured between them without work being done.
Again in the absence of dissipation, the change in energy for the reconfiguration δ ≈V 0.

The system is strongly nonlinearity so that it is difficult to find heteroclinic connections using the direct method pre-
sented in Section 3.2. Therefore, we employ an optimisation method to find a suitable parameter set. An objective function is
constructed in Eq. (47), the minimisation of which provides the requirement for a heteroclinic connection.

( )( ) ( )= ̇ + ̇ + ̇ ̇ ∙( − − ) ( )F y y x x x x x x, , 471 2
2

1 2 1 10 2 20
2

Therefore, for a heteroclinic connection between E3 and E4, if one exists, the symmetry property requires that Eq. (47)
vanishes. We integrate the system of equations in the direction of the unstable eigenvector of E3 as in Eq. (26), until it
intersects the symmetry axis − =y y 01 2 , i.e. =y y1 2, and we measure the six states ̇x1, ̇x2, ̇y1, ̇y2,x1,x2. Through substitution of these
values into Eq. (47), the value of the objective function can be calculated. Then the condition ( ̇ + ̇ )=y y 01 2 guarantees that the
trajectory is perpendicular to the symmetry axis −y y1 2, and (( ̇ ̇ )∙( − − ))x x x x x x, ,1 2 1 10 2 20 expresses the dot product of two vectors
that ensure the projection of the heteroclinic connection is symmetric in −x x1 2.

Again, due to the sensitivity of the problem, and in a real smart structure parameter errors, phase trajectories emerging
from one unstable equilibrium point will not reach the other unstable equilibrium precisely, which means Eq. (47) cannot
obtain a precise set of parameters using the optimisation method. To compensate for such errors, the active control method
which was used in Section 3 is again used to capture phase space trajectories in a neighbourhood of the target unstable
equilibrium point. The transition from E3 to E4 can be seen in Fig. 20, where the controller ensures capture and stabilisation
at E4. The connection in the coordinate space −x x1 2 can be seen as a homoclinic connection, and in the coordinate space −y y1 2
can be seen as a heteroclinic connection. The transition can also be seen in Fig. 21, which provides the time history of the
four state variables. The corresponding controls κ1, κ2, k1and k2 are shown in Fig. 22. Fig. 23 shows the geometry of the
transition process. The closed dotted line indicates the midpoint of the transition.
Fig. 20. Controlled transition from E3 to E4 with the controller active in the neighbourhood of E4. (a) Homoclinic connection in the x1–x2 coordinate space,
(b) Heteroclinic connection in the y1–y2 coordinate space.



Fig. 21. Displacements during the transition from E3 to E4.

Fig. 22. Controls actuated at the end of the transition. (a) torsional spring stiffness, (b) axial spring stiffness.

Fig. 23. Geometry of the transition process where the red point is the mid-point of the structure, which has a trajectory shown as a dashed line. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusions

Using the kinematic theory of mechanisms, an analysis has been firstly been presented regarding the reconfiguration of a
simple four-bar linkage through heteroclinic connections. Then, a pseudo-rigid model was developed as an unstable
structure which has several equilibria (stable and unstable), again with heteroclinic connections found. In principle, such
reconfigurations do not require the input of energy, unlike transitions between stable equilibria which required the addition
of and the dissipation of energy. Finally, the reconfiguration method has been used to investigate the behaviour of a more
realistic elastic smart structure model. By comparing the deformation energy of the elastic spring model and a truly con-
tinuous model, it can be verified that the spring model can provide a good approximation to a buckling beam. This more
complex dynamical model, which has strong nonlinearity, can again be reconfigured through transitions between unstable
equilibria.
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