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a b s t r a c t

In this paper, the aeroelastic stability of a composite hingeless rotor blade with a
chordwise movable mass is investigated. The point mass is located near the tip of the
blade and its chordwise location is variable with respect to the elastic axis and can
be moved during the flight. This movable mass is added to the blade to actuate the
blade twist during flight. By actuating the mass in the chord direction of the blade
during the flight, a bending moment which is the result of the centrifugal force of
the mass and its offset is induced on the blade. This bending moment induces twist
in the blade, due to bend-twist coupling in the composite lamination. The blade is
modelled by using the geometrically exact fully intrinsic beam equations along with the
variational asymptotic beam sectional analysis. The aerodynamic loads are simulated by
using the two-dimensional strip theory combined with a uniform inflow. The nonlinear
partial differential aeroelastic equations are discretized by a time-space scheme, and
the converged results are compared with those reported in the literature and a very
good match is observed. The results show that by positioning the mass near the tip of
the blade, and also by using the ply angle of about 30 degree in this configuration, the
highest possible twist change is achieved when the mass moves from the leading edge
to the trailing edge of the blade. Moreover, the spanwise location of the mass slightly
changes the stability boundaries, while the chordwise movement significantly affects the
aeroelastic instability.

Crown Copyright© 2019 Published by Elsevier Ltd. All rights reserved.

1. Introduction

During the past decades of development in rotorcraft industry, different concepts have been suggested to enhance
the performance of the vehicle and at the same time to decrease the pollution, noise and vibration, by changing the
shape of the blade. Blade twist morphing is a concept which could modify the shape of the blade in flight to achieve
the best performance in each flight condition. For helicopter rotors, the twist distribution that minimizes the power
requirement is different in each flight condition (Mistry et al., 2011). Therefore, the predefined blade twist variation
normally is chosen as a compromise between different flight conditions. Blade twist morphing changes the blade twist
during flight to allow the rotorcraft to fly in an optimum condition in terms of twist variation. Han et al. (2016) showed
how the performance of a helicopter during flight could be improved by dynamic blade twist. They demonstrated that
the dynamic blade twist improves the performance and reduces the rotor power requirement. Chen and Chopra (1996)
studied the effect of piezoelectric actuators on the twist change of blades. The piezoelectric patched were positioned on
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the top and bottom of the blade and about 0.4◦ of twist change was achieved. Then this concept was tested in hover
condition, and it was proved that a linear twist change of about 0.6◦ can modify the rotor lift by 10% (Chen and Chopra,
1997). Reduction and control of the vibratory loads of a composite box beam blade with using the smart materials was
considered by Chattopadhyay et al. (2000). It was found that the number of actuators and their location have significant
effect on the reduction of dynamic loads. Cesnik et al. (2001) developed an analytical model for modelling an active twist
rotor blade with distributed anisotropic strain actuators. This active twist rotor aimed to reduce the vibration and noise
of the blade, and good correlation with experiments was observed. This study developed further to cover the forward
flight condition by Shin and Cesnik (2001). Pawar and Jung (2009) analysed how the active twist concept affect the active
vibration reduction of composite blades with imperfections. They showed that the rotor vibratory loads and also the
energy input may be influenced by introducing imperfections to the blade. Twist distribution modification of a tiltrotor
blade based on shape memory alloy torque tube was studied by Prahlad and Chopra (2001). In this study, the actuation
behaviour was tuned by the heat treatment of SMAs. Mistry et al. (2011) developed a warp-induced twist variation concept
for rotary-wing applications. In this method, the twist of the blade changes by rotation of a threaded rod. More recently,
Amoozgar et al. (2018a,b) developed a novel concept for twist morphing of composite blades. In this study, the twist of
the blade was the result of mass movement and stiffness tailoring of the composite blade.

Aeroelastic analysis of helicopter rotor blades is a key design requirement. Hingeless rotor blades are normally
considered as cantilevered beams, and the common type of aeroelastic instability is the one characterized by the coupling
between lead–lag bending, flap bending, and torsion deflections of blades. The frequency of this instability is usually near
to the lead–lag natural frequency (Hodges and Ormiston, 1976). There are some review papers dedicated to surveying
different models used for composite rotor blade analysis (Hodges, 1990). One of the first studies concerning with the
aeroelastic stability of composite rotor blades, was considered by Hong et al. (1985). It was found that depending on the
laminate design of the box beam, different stability characteristics may be obtained. Panda and chopra (1987) determined
the aeroelastic stability and response of composite hingeless rotor blades based on moderate deflection beam theory in
forward flight. The effect of ply orientation and elastic coupling on the vibration and stability was shown. The effect
of transverse shear deformation on the modelling of the rotor blade for aeroelastic analysis and response of composite
rotors has been presented by Smith and Chopra (1993) in forward flight. They also showed that the unsteady aerodynamic
increases the vibratory load up to 30%. Kim and Dugundjit (1993) investigated the large amplitude, nonlinear aeroelastic
behaviour of composite hingeless rotor blades in hover condition. Numerical results showed that in moderate amplitude,
the nonlinear aerodynamics is dominant, and nonlinear static-dynamic structural couplings can affect the aeroelastic
behaviour at large amplitudes. The aeroelastic response and vibratory loads of an elastically tailored composite rotor blade
has been determined by Smith (1994). It was highlighted that the positive or negative elastic couplings have stabilizing
or destabilizing effect on the lag mode damping. Tracy and Chopra (1998) studied the aeroelastic stability of a composite
hingeless rotor blade in hover flight. In the positive collective pitch angles, the lag damping mode stabilizes with negative
chordwise bending-torsion coupling. The influence of fibre orientation and stacking sequence on the aeroelastic stability
of composite rotor blades has been investigated by Jeon et al. (1998). The lag mode instability is influenced by the
bending-twist coupling in the symmetric lamination, and the extension-twist coupling in the antisymmetric configuration.

A new formulation based on exact beam formulation and unsteady dynamic wake aerodynamic model was considered
by Shang et al. (1999) for aeroelastic stability analysis of composite hingeless rotor blades. The initial twist and curvature
of the composite blade can improve the aeroelastic stability and reduce the static loads. Jeon and Lee (2001) considered the
aeroelasticity of a composite rotor blade using a finite element method based on large deflection beam theory in forward
flight. It was proposed that when the deflection is large, the full finite element should be used instead of modal approach to
predict the stability behaviour accurately. An analytical model for investigating the aeroelasticity of composite blades with
swept tips was proposed by Friedmann et al. (2002). The tip sweep can have destabilizing effect on the blade, while this
instability can be removed in some certain ply angles of the composite blade. Bao et al. (2003) designed and tested several
Mach scaled composite blades to reduce the vibratory loads of the blade and good correlation in hover condition was
observed. Friedmann et al. (2009) examined the compatibility between the composite cross-sectional analysis based on
variational asymptotic approach and a moderate deflection beam model, and the results were validated with experimental
data. The aeroelastic stability behaviour of an isolated composite hingeless rotor blade has been determined by Fulton
and Hodges (1993). The blade was modelled by a geometrically exact beam formulation without any restrictions on
the rotations and displacements magnitudes. The analysis showed that the non-classical couplings affect the aeroelastic
stabilities, and therefore must be considered in general purpose analysis. Lim and Lee (2009) studied the aeroelastic
analysis of bearingless rotor blades considering a composite flexbeam by using a large deflection beam theory. They
showed that the bending-torsional coupling of the composite layup could change the stability of the lag mode. The
aeroelastic stability of composite hingeless rotors by using the free-wake aerodynamic model has been also considered
by Xiao et al. (2013).

Byers and Gandhi (2009, 2006, 2005) explored the influence of a moving mass in the spanwise direction on the
aeroelastic stability to produce a vibration absorber. They showed the Coriolis forces couple the flapping and the lead–lag
motion together and hence affect the rotor stability. The effect of embedded chordwise absorbers on the stability of the
rotor system was studied experimentally and analytically by Kang et al. (2006). They showed that using the chordwise
absorbers improves the stability of rotors.

To add to the aforementioned literature, in this study a new twist morphing concept based on the mass movement
is introduced, and the effect of this morphing concept on the aeroelastic stability boundaries of the composite hingeless
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Fig. 1. Schematic of the morphing twist change concept.

rotor blade in hovering condition is determined. The blade structural model is based on the geometrically exact fully
intrinsic beam equations (Hodges, 2003) and the aerodynamic loading on the blade is a combination of the quasi-steady
strip aerodynamic theory and the uniform inflow (Amoozgar et al., 2017). The added mass is modelled as a concentrated
mass attached to the blade which can move in different directions (Amoozgar et al., 2018a), and the cross-sectional
characteristics are determined by using the variational asymptotic approach (Yu et al., 2002).

2. Problem statement

A composite hingeless rotor blade is modelled here as a cantilevered beam attached to the blade hub. The blade has
a composite rectangular closed box section as a spar. The blade is equipped with a track attached to the spar to allow
for point mass chordwise movement in flight. This mass movement produces a variable in-plane bending moment due to
the centrifugal force acting on the mass. This bending moment then turns to an equivalent torsional moment through the
spar lag-torsion coupling. Therefore, the twist of the blade depends on the point mass chordwise movement. The point
mass location along the blade coordinate system is denoted here as xp and yp, respectively. Fig. 1 shows a schematic of
the morphing system described above. The chordwise position of the mass (yp), shown in Fig. 1, is able to change in flight
and assumes a suitable mechanism may be designed. Thus, when the flight condition changes, the required blade twist,
in terms of the optimum performance, changes. The spanwise location of the added mass is a fixed design variable. It is
assumed that the added mass does not have any offset in the z direction (zp = 0). The origin of the coordinate system is
located at the root of the blade and on the quarter chord of the section. The x axis is along the blade span, and the y axis
is along the chord of the blade toward the leading edge of the blade.
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3. Aeroelastic modelling

The aeroelastic modelling of the blade is composed of two modules, the structural model and the aerodynamic loading
model. The three-dimensional structural model of the blade can be divided into two parts. In the first part, a two-
dimensional cross-sectional analysis is carried out by using the variational asymptotic approach (Yu et al., 2002), and
the cross-sectional properties are obtained. Then the global behaviour of the blade is modelled by the one-dimensional
nonlinear geometrically exact fully intrinsic beam equations (Hodges, 2003). This formulation has been successfully used
for structural analysis of stationary and rotating beams (Amoozgar and Shahverdi, 2016; Sotoudeh and Hodges, 2013;
Sachdeva et al., 2017).

The geometrically exact fully intrinsic beam equations express the nonlinear behaviour of generally anisotropic, initially
twisted and curved beam as

∂F1/∂x1 + K2F3 − K3F2 + faero1 = ∂P1/∂t + �2P3 − �3P2
∂F2/∂x1 + K3F1 − K1F3 + faero2 = ∂P2/∂t + �3P1 − �1P3
∂F3/∂x1 + K1F2 − K3F1 + faero3 = ∂P3/∂t + �1P2 − �2P1
∂M1/∂x1 + K2M3 − K3M2 + 2γ12F3 − 2γ13F2 + maero1 = ∂H1/∂t + �2H3 − �3H2 + V2P3 − V3P2
∂M2/∂x1 + K3M1 − K1M3 + 2γ13F1 − (1 + γ11)F3 + maero2 = ∂H2/∂t + �3H1 − �1H3 + V3P1 − V1P3
∂M3/∂x1 + K1M2 − K2M1 + (1 + γ11)F2 − 2γ12F1 + maero3 = ∂H3/∂t + �1H2 − �2H1 + V1P2 − V2P1
∂V1/∂x1 + K2V3 − K3V2 + 2γ12�3 − 2γ13�2 = ∂γ11/∂t (1)
∂V2/∂x1 + K3V1 − K1V3 − (1 + γ11) �3 + 2γ13�1 = 2∂γ12/∂t
∂V3/∂x1 + K1V2 − K2V1 + (1 + γ11) �2 − 2γ12�1 = 2∂γ13/∂t
∂�1/∂x1 + K2�3 − K3�2 = ∂κ1/∂t
∂�2/∂x1 + K3�1 − K1�3 = ∂κ2/∂t
∂�3/∂x1 + K1�2 − K2�1 = ∂κ3/∂t

where, x1 is the spanwise coordinate of the beam reference line, Fi and Mi for i = 1, 2, 3, are the internal forces
and moments, Vi and �i are the linear and angular velocities, Pi and Hi are the sectional linear and angular momenta,
respectively. Ki is the final curvature of the deformed beam, and γ1i and κ1i are the strain measures. The aerodynamic
force and moments on the blade are defined here by faeroi and maeroi for i = 1, 2, 3. All these parameters are defined in the
deformed coordinate system except the initial curvature. The details of the formulation can be found in Hodges (2003).
The cross-sectional properties of the composite spar is determined by VABS (Yu et al., 2002), which are then introduced
in the beam formulation through the stiffness matrix as⎡⎢⎢⎢⎢⎢⎣

F1
F2
F3
M1
M2
M3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A11 A12 A13 B11 B12 B13
A12 A22 A23 B21 B22 B23
A13 A23 A33 B31 B32 B33
B11 B21 B31 D11 D12 D13
B12 B22 B32 D12 D22 D23
B13 B23 B33 D13 D23 D33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
γ11
2γ12
2γ13
κ1
κ2
κ3

⎤⎥⎥⎥⎥⎥⎦ (2)

where A, B, and D are the composite spar cross-section stiffness components. It is noted that these stiffness matrices are
different from the stiffness matrices obtained based on lamination theory. As the beam is clamped to the root, the fixed
boundary conditions are applied to close the formulation.

The aerodynamic loads in the hover condition based on the intrinsic expression of the Greenberg’s theory (Amoozgar
et al., 2017) is defined as

f aero = CBaf a (3)
maero = CBama + CBaxaf a

where xa is the offset between the beam reference line, and the aerodynamic centre, and CBa is the direction cosine matrix
of deformed frame with respect to aerodynamic frame. In this study, it is assumed that the offset of the aerodynamic
centre from the elastic axis is zero. The aerodynamic force and moment equations in the aerodynamic reference frame
are Amoozgar et al. (2017)

fa = ρ∞b

⎡⎣ 0
claV

2
a3 − cd0VTV 2

a2 + cdaVa3Va2

−claVa2

(
Va3 −

�ab
2

)
−

cla V̇a3 b
2 − cd0VTVa3 + cdaV

2
a3

⎤⎦ (4)

ma = 2ρ∞b2

⎡⎣−bclaVa2�a/8 − cla
(
b2�̇a/32 − bV̇a3/8

)
0
0

⎤⎦
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where cla , cd0 , and cda are the airfoil lift and drag coefficients, respectively. The variables with subscript ( a) are expressed
in the aerodynamic reference frame. The induced inflow velocity corrects the vertical component of the velocity as follow

Va3T = Va3 + λ (5)

The uniform induced inflow velocity determined by the blade element momentum theory at 3
4 span, λ, is given

as (Gessow and Mayers, 1967)

λ = sgn [θ + φ(0.75R)]
πσ

8
�R

(√
1 +

12
πσ

|θ + φ(0.75R)| − 1

)
(6)

where σ is the blade solidity, and θ and φ are the blade pitch angle and elastic twist angle, respectively.
Finally, by combining the structural and aerodynamic models together, the full aeroelastic equations can be obtained.

To solve the nonlinear aeroelastic equations, a time-space discretization scheme is used (Hodges, 2003). In this method,
every unknown variable is defined on the right and left hand sides of each node. By applying this scheme to the governing
equations, the discretized equations of motion for the nth element in the vector format will be:

F̂n+1
l − F̂nr

dl
+ (̃κ

n
+ k̃n)F

n
+ f

n
aero =

˙P
n
+ Ω̃

n
P

n

M̂n+1
l − M̂n

r

dl
+

(̃
κ
n
+ k̃n

)
M

n
+

(
ẽ1 + γ̃

n
)
F
n
+ mn

aero =
˙H
n
+ Ω̃

n
H

n
+ Ṽ

n
P

n
(7)

V̂n+1
l − V̂n

r

dl
+

(̃
κ
n
+ k̃n

)
V
n
+

(
ẽ1 + γ̃

n
)
Ω

n
= γ̇

n

Ω̂
n+1
l − Ω̂n

r

dl
+

(̃
κ
n
+ k̃n

)
Ω

n
= κ̇

n

where, subscripts r and l refer to the right and left hand sides of each node, ( ˆ ) represents the nodal value of each variable,
and ( ˜ ), the tilde operator, converts any vector to its corresponding matrix. The element variable, ( ¯ ), defines the average
of each variable such as F, as follows:

F
n

=
F̂n+1
l + F̂nr

2
(8)

In this way, any discontinuity, such as the point mass, can be taken into account. Hence, the following nodal equations
are used to consider the nodal mass effect on the equations of motion:

F̂nr − ĈnT
lr F̂

n
l + f̂naero =

˙̂Pn
r +

˜̂Ωn
r P̂

n
r (9)

M̂n
r − ĈnT

lr M̂
n
l + m̂n

aero =
˙̂Hn
r +

˜̂Ωn
r Ĥ

n
r +

˜̂Vn

r P̂
n
r (10)

where, Ĉn
lr is the slope discontinuity, and in this case it is simply the identity matrix. The added mass is introduced to the

formulation through the generalized momentum-velocity relation as follows:{
P̂r

Ĥr

}
=

[
m̂∆ −m̂˜̂X
m̂˜̂X Î

]{
V̂r
Ω̂r

}
(11)

where, m̂, Î , and X̂ are the added mass value, moment of inertia, and location from the beam reference line. In this study,
the moment of inertia of the added mass (Î) about its centroid is assumed to be zero. The added mass value and its offset
from the reference line is zero everywhere except the location at which the mass is added to the blade:

Î = 0, m̂M = mp, X̂M =
[
0 yp zp

]T (12)

where M is the node at which the mass is added.
First by removing all the time derivatives terms, the steady-state condition of the system is obtained. Then the

nonlinear equations are linearized about the steady-state solution, and the aeroelastic frequency and damping are
determined from the eigenvalue analysis. The aeroelastic stability of the hingeless rotor blade here is investigated here by
checking the lead–lag mode damping as this mode is more prone to suffer from aeroelastic instability due to low values
of drag force in this direction (Hodges and Ormiston, 1976).

4. Numerical results

To check the validity of the developed aeroelastic code, two cases are considered and compared with those reported in
the literature. First the effect of adding a tip point mass with a weight equal to the blade weight, on the nondimensional
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Fig. 2. Comparison of the change in frequency parameter with respect to the nondimensional rotating speed for an isotropic beam with a point
mass.

Table 1
AS4/3501-6 graphite/epoxy material properties (Fulton and Hodges,
1993).
Material property Value

E11 (GPa) 142
E22 = E33 (GPa) 9.81
G12 = G13 (GPa) 6
G23 (GPa) 3.77
ν12 = ν13 0.3
ν23 0.34

Table 2
Hingeless rotor blade characteristics.
Parameter Definition Value

γ = 3ρ∞cla cR/m Lock number 5.593
σ = Nbc/πR Solidity 0.0572
c/R Chord/blade length 0.08986
Nb Number of blades 2
cd0/cla Drag coefficient to lift coefficient ratio 0.0079/6.283

first and second flap modes of an isotropic cantilevered beam is considered. The obtained results are compared with those
reported by Wright et al. (1982) in Fig. 2, and shown to be a good match. Here m is the mass per unit length, R is the
blade length, �0 is the rotating velocity, and EI2 is the flap bending stiffness of the blade. It is noted that here the added
tip mass value is equal to the blade overall mass.

To check the accuracy of the aeroelastic analysis results, a composite blade identical to the one used in Fulton and
Hodges (1993) is considered next. The blade spar is a rectangular box section, with outer dimensions of 12.804 mm and
8.944 mm with a wall thickness of 0.804 mm. The spar is made of AS4/3501-6 graphite/epoxy with material properties
described in Table 1. Each wall of the spar box has 6 layers of [02, ζ4] and the layups are antisymmetric with respect to
the mid-plane of the cross-section as shown in Fig. 3.

The rotor blade characteristics are listed in Table 2. The nondimensional aeroelastic lead–lag damping of this box-beam
case is determined for various blade pitch angles, and compared with those obtained by Fulton and Hodges (Fulton and
Hodges, 1993) in Fig. 3. The Timoshenko sectional stiffness matrices determined by VABS for this case are presented in
Table 3.

By evaluating the previous two test cases, it is clear that the developed aeroelastic code is capable of predicting
the effect of added mass on the aeroelastic stability of composite hingeless rotor blades in hover. In what follows,
the effect of added mass on the twist morphing and the aeroelastic stability of the composite blades is analysed. The
blade characteristics are same as the one used in the previous section, except that the layup arrangement here is no
longer antisymmetric. This is because here the bend-twist coupling is the main source of the twist morphing, and
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Fig. 3. Comparison of the lead–lag damping of the composite blade.

Table 3
Timoshenko stiffness matrix.
Stiffness ζ = 0◦ ζ = 20◦ ζ = 90◦

A11 (N) 4.6×106 3.63×106 1.68×106

A22 (N) 1.07×105 2.19×105 9.95×104

A33 (N) 6.3×104 1.26×105 5.54×104

B11 (N m) 0 3.37×103 0
B22 (N m) 0 1.64×103 0
B33 (N m) 0 1.66×103 0
D11 (N m2) 4.6 1.07×101 4.6
D22 (N m2) 5.6×101 4.3×101 2.0×101

D33 (N m2) 1.0×102 7.79×101 3.7×101

therefore, a unidirectional laminate consisting of 6 plies with fibre angle ζ in each wall is considered ([ζ]6). This composite
configuration means that the B components of the stiffness matrix (Eq. (2)) become zero, while other stiffness values (A,
D) are non-zero. This is because the lag-torsion coupling is the source of the twist change in this paper. Note that in all
cases from here on, the rotor angular velocity is �R = 1000 rpm, and it is assumed that the centroid of the spar box is
coincident with centre of mass of the blade at the quarter chord of the NACA 0012 airfoil.

The mass magnitude is considered here as a fraction of the blade mass itself, and denoted as µ = mp/m. First the
effect of added mass on the twist change of the composite blade is examined. In this case, the aerodynamic loading is
not considered. Fig. 4 shows the effect of different ply angles on the spanwise twist distribution of the blade for two
locations of the mass. The upper domain is for the most aft position of the mass, while the lower domain is for the most
forward location of the mass. By introducing the mass, the twist distribution of the blade changes, and the rate of change
depends on the ply orientation. By moving the mass from the trailing edge to the leading edge of the cross-section, about
δφtip = 5.5o tip twist change is induced when the ply angle is ζ = 30◦.

The effect of different ply angles on the tip twist value of the blade is determined and shown in Fig. 5. Here the
spanwise location of the mass is at the tip of the blade. By increasing the ply angle, the tip twist first increases until a
ply angle of about ζ = 25◦, and then decreases. This is true for both chordwise locations of the mass. This ply angle is
representative of the highest bending-twist coupling in the composite blade in this configuration. In should be noted that
the ply angle not only changes the lag-torsion coupling but also it influences the rotating frequencies of the blade to some
extent.

Fig. 6 demonstrates the effect of spanwise location of the point mass on the actuation range of blade tip twist for
different layup angles. The actuation range of blade tip twist is the difference of the tip twist between the aft and forward
locations of the point mass; and therefore indicates the potential degree to which tip twist may be morphed in flight. The
highest tip twist change occurs when the mass is located at the tip of the blade for all ply angles. Moreover, the maximum
tip twist change for the spanwise location of the mass between 0.5 < x/R < 0.8 is for ζ = 10◦, while from here on to the
tip of the blade is for ζ = 30◦.
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Fig. 4. The twist distribution of the blade for different layup angles and two chordwise positions (µ = 0.05, xp/R = 1).

Fig. 5. The blade tip twist versus layup angle for (µ = 0.05, xp/R = 1).

Finally, the effect of non-dimensional mass magnitude on the tip twist actuation range of the composite blade is
analysed and shown in Fig. 7. By increasing the mass magnitude, the amount of twist change increases for all ply angles.
By considering all the results presented above, it is highlighted here that the mass magnitude and location affects the
twist change of the blade dramatically. Depending on the spar configuration, there is one layup orientation that results
in the highest twist change in the blade. Therefore, in terms of the blade twist morphing, moving a mass near the tip of
blade has positive effects. Now in the what follows, the effect of the mass on the aeroelastic stability of composite blade
is discussed.

Fig. 8 shows the effect of aerodynamic loads on the tip twist change of the blade when the mass is located at the tip.
In this case, the blade pitch angle is zero. It is clear that by adding the aerodynamic loads and moments to the blade, the
tip twist decreases. This is because the blade flap angle tends to decrease the lag bending moment applied on the point
mass. This highlights the importance of the aerodynamic loads on the effectiveness of this morphing concept.

Fig. 9 illustrates the aeroelastic stability of the composite blade with respect to different layup angles. In this case the
blade does not include any added mass. The blade is stable for ply angles higher than about ζ = 65◦ and smaller than
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Fig. 6. The blade tip twist actuation range versus spanwise location for different ply angles (µ = 0.05).

Fig. 7. The blade tip twist actuation range versus mass magnitude (xp/R = 1).

ζ = 1◦. The instability domain is almost the same for all layup angles between these two boundaries, but the domain
tends to get larger for ply angles between 1o < ζ < 10◦. It is noted that as this blade is unstable in the region between 1o

<ζ < 65◦, and the ply angle that needs to be selected for designing the morphing mechanism must be outside this range.
However, it could be possible to design a cross-section to achieve required level of twist change subject to the aeroelastic
instability constraints.

The effect of nondimensional mass magnitude on the lead–lag aeroelastic stability boundaries is shown in Fig. 10. In
this case, the mass is located at the tip of the blade on the shear centre of the section. By increasing the mass magnitude,
the unstable region decreases. Therefore, the point mass located at the shear centre of the blade, has a stabilizing effect.
The left boundary of the unstable region stays unchanged by the additional mass until ζ = 40◦. Moreover, by introducing
the mass to the blade, the layup angle that the blade enters into the stable region decreases. Therefore, by adding a mass
to the blade and locating it exactly on the elastic axis of the blade, the aeroelastic stability of the blade increases.
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Fig. 8. The blade tip twist value with and without aerodynamic loads for different ply angles (µ = 0.05, xp/R = 1).

Fig. 9. The stability boundary of the composite blade without added mass.

Fig. 11 shows how the spanwise location of the added mass changes the lead–lag aeroelastic stability boundaries. Here,
the mass value is 5% of the blade weight (µ = 0.05) and located at the shear centre of the blade. By moving the mass
from the mid-span to the tip of the blade, the unstable region shrinks. It is noted that the point mass spanwise location
has a minor effect on the lead–lag aeroelastic instability. This is because the mass does not produce any lag moment and
therefore, the bend-twist coupling does not produce any torsional moment.

The effect of chordwise movement of the point mass on the lead–lag aeroelastic stability of the composite blade is
shown in Fig. 12. By moving the mass from the leading edge to the trailing edge, the size of the unstable region increases.
This indicates that the chordwise location of the mass critically changes the stability characteristics of the blade. Moreover,
the ply angle at which the blade enters the stable region increases by moving the mass toward the trailing edge. By moving
the mass toward the trailing edge, the lag moment due to the centrifugal force of the added mass, produces a nose up
pitching moment which in turn increases the aerodynamic loads. Therefore, moving the mass toward the trailing edge
has a destabilizing effect on the blade in this configuration.



134 M.R. Amoozgar, A.D. Shaw, J. Zhang et al. / Journal of Fluids and Structures 87 (2019) 124–136

Fig. 10. Stability boundaries of the lag mode for different point mass magnitudes (yp/c = 0, xp/R = 1).

Fig. 11. Stability boundaries of the lag mode for different spanwise locations of the point mass (µ = 0.05, yp/c = 0).

Finally, the aeroelastic lead–lag damping variation with respect to the blade pitch angle for the above case (yp/c =

−0.25) when the ply angle is ζ = 60◦ is shown in Fig. 13. By increasing the blade pitch, the damping first decreases and
then increases. Therefore, the blade pitch angle in this case first has a destabilizing effect and then has a stabilizing effect.
This is the reason that in the above cases for a constant ply angle, by increasing the pitch angle, the instability region
decreases.

5. Conclusion

The aeroelastic stability of the composite hingeless rotor blade with an added mass is studied. The added mass is used
as an actuation method to change the twist of the blade. By moving the mass in the chordwise direction, the bending-twist
coupling of the composite layup of spar induces a torsional moment on the blade. This torsional moment then changes
the twist of the blade. As the added mass may change the aeroelastic stability of the blade, the effect of its spanwise and
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Fig. 12. Stability boundaries of the lag mode for different chordwise locations of the point mass (µ = 0.05, xp/R = 1).

Fig. 13. Normalized lead–lag damping for different pitch angles (µ = 0.05, xp/R = 1, yp/c = −0.25, ζ = 60◦).

chordwise location, and also its magnitude, on the blade lead–lag stability boundaries is evaluated. Introducing the mass
to the blade, can change the twist distribution of the blade. The amount of twist induced in the blade depends on the
layup angle, mass magnitude, mass location, and angular velocity of the rotor. The added mass influences the lead–lag
aeroelastic instability of the blade. By moving the mass towards the tip of the blade, the instability region decreases, while
by moving the mass from the leading edge to the trailing edge of the blade, the unstable domain increases. Moreover,
the mass magnitude also affects the stability boundaries of the blade. Therefore, this morphing concept may be subjected
to aeroelastic instabilities, and in designing or modifying a blade to work with this morphing concept, it is essential to
consider the aeroelastic stability as a design constraint.
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