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The idea of morphing a helicopter blade by using compliant structures promises augmented capabilities 
in terms of manoeuvrability and fuel efficiency. To achieve morphing, compliant structures work by 
elastically deforming to achieve the desired response, and therefore actuation must work against the 
inherent structural stiffness in addition to external loads. Passive Energy Balancing has previously 
addressed this problem for quasistatic loads, by adding negative stiffness elements in parallel with the 
structural stiffness, so that stiffness is reduced almost to zero and lighter actuators may be used. This 
work extends this idea to the case of dynamic actuation, where negative stiffness is optimally used 
to reduce the natural frequency of a morphing blade, so that it may resonate at the desired actuation 
frequency. A negative stiffness mechanism in parallel with the structural stiffness can be used to tailor the 
natural frequency of a morphing blade system. Furthermore, the negative stiffness mechanism introduces 
nonlinearity that has some benefits in stabilising the resonant response amplitude compared to a linear 
resonance, and is also shown to be beneficial to achieve a weight efficient mechanism. A spiral pulley 
negative stiffness mechanism has previously addressed this problem for quasistatic loads and is extended 
here to achieve linear frequency tailoring and nonlinear frequency tailoring, respectively. The equivalent 
stiffness of the extended spring used in the rotating system has been investigated. Resonant morphing 
strategies exploiting dynamic tailoring have been studied showing encouraging preliminary results.

© 2022 Elsevier Masson SAS. All rights reserved.
1. Introduction

Nowadays, morphing technology can significantly reduce the 
mass and energy consumption, and improve the overall flight per-
formance compared to traditional aircraft structures, and hence 
they are receiving widespread interest across the aerospace indus-
try [1–10]. Advances in the development of smart actuators and 
compliant structures have made morphing wings become feasi-
ble. The aircraft system can therefore be integrated to allow shape 
changes of the structure, and therefore adapt its aerodynamic 
properties to suit changing requirements. Compared with morph-
ing technology used in fixed wing aircraft, morphing rotorcraft 
blades promise improved performance by changing their aerody-
namic characteristics by a continuous change in shape. Rotorcraft 
use cyclic pitch control for tuning the lift when the blades rotate, 
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since the blades need to be pitched once-per-revolution to avoid 
large rolling moments as the incident flow velocity varies for dif-
ferent azimuth angles [11,12]. The lift the blade generates on the 
retreating side therefore limits the maximum speed of the rotor-
craft. Consequently, the performance of the rotor and the stability 
of the helicopter will be reduced. In order to improve rotor perfor-
mance, considerable research has investigated morphing structure 
concepts. The idea of morphing blades by using compliant struc-
tures promises augmented capabilities in terms of manoeuvrability 
and fuel efficiency [13–16].

In previous studies, a novel concept of dynamic stall control for 
rotor aerofoil via a variable droop leading-edge (VDLE) has been 
investigated [17,18]. The variable droop leading edge is used to 
suppress the dynamic stall vortex of the aerofoil and improve the 
performance during dynamic stall. The maximum drag and nega-
tive moment coefficients can be reduced by about 79.2% and 81.2% 
respectively. Moreover, the lift of an aerofoil depends on its chord 
length and blade surface area, and chord extension morphing of 
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Nomenclature

α pitch angle
d magnitude of camber morphing
b semi-length of the rigid segment
c chord
m mass of the nonlinear mass-spring-damper system
cs damping coefficient of the nonlinear mass-spring-

damper system
ks stiffness of the nonlinear mass-spring-damper system
kn1 linear coefficient of a negative stiffness device
kn3 cubic coefficient of a negative stiffness device
yten tendon mounting offset
kten stiffness of the tendon
r f spooling pulley radius
xl negative stiffness mounting point
l length of the morphing camber segment
E Young’s modulus of the morphing camber

I second moment of area of the morphing camber
ρ Mass density of morphing camber spine
c damping constant
δ spiral pulley rotation angle
θ associated offset angle of spiral pulley
δ0 initial pulley rotation angle of the spiral pulley
r0, k1, k2 parameters of the spiral profile
L0 Initial extended spring length
K spring constant
ρs As mass per unit length of the spring
Es As effective axial stiffness of the spring
lh offset position of the spring
us deformation of the spring caused by centrifugal force
ls initial length of the spring
kω equivalent stiffness of the spring under rotation
helicopter rotors has been shown to be highly beneficial for stall 
alleviation [13,19]. Some other concepts for morphing blades fo-
cus on camber change and active twist; compliant structures have 
been used as an alternative to trailing-edge flaps [20,21] and com-
posite structures have been used to modify the twist and the tor-
sional stiffness of rotating blades [22–24].

A typical morphing system is composed of light and compliant 
materials and is driven by traditional actuators, such as electrome-
chanical actuation [25]. Some of these actuators, such as piezoelec-
tric actuators, are compact, high-force and high bandwidth devices, 
but they can only provide a limited stroke. Frequently the use of 
these actuators to drive the system can cost noteworthy energy 
for each cycle of operation and the spent energy cannot be recov-
ered. This limitation can be critical in cases where large operation 
or large-size rotor blades are needed. Therefore, there is increasing 
interest in resonant actuation, particularly in aerospace engineer-
ing. Resonant actuation alters a structure to ensure that the inertia 
and stiffness forces cancel each other out in a desired actuation cy-
cle, thereby minimising the demand on actuators. An N-link snake 
robot with parallel elastic actuators (PEA) was investigated and 
the spring stiffness was chosen to achieve resonant actuation [26]. 
With the optimised spring stiffness, the PEA reduced the current 
consumption by 72% during the fast movement of the robot [26]. 
Moreover, resonant actuation can be potentially applied to mor-
phing. Piezoelectric resonant actuation systems for an active flap 
of helicopter rotors have been investigated by tailoring the natu-
ral frequencies of the actuation system to the required operating 
frequencies to increase the output authority. Numerical simula-
tions reveal that the actuator authority at the tuned frequency 
can be increased with wide operating bandwidths compared to the 
original actuation system without resonant tuning [27,28]. For the 
morphing application, a bistable wing has been investigated us-
ing surface bonded piezoelectric materials, exploiting resonance to 
achieve snap-through of the structure with lower excitation volt-
age [29,30]. Moreover, an elastic ring with a compliant mechanism 
has been designed to achieve resonant wing actuation mechanism 
for application in flapping wing MAVs, so that the wing reduces 
the energy expenditure and provides amplitude amplification [31].

A promising active camber morphing concept for rotorcraft and 
fixed wing aircraft has been proposed, known as the Fish Bone Ac-
tive Camber (FishBAC) [32–35], which uses a biologically inspired 
internal bending beam and elastomeric matrix composite as the 
skin surface. Passive energy balancing has been previously inves-
tigated to reduce actuation requirements for quasistatic loads, by 
adding negative stiffness elements in parallel with the structural 
2

stiffness, so that stiffness is reduced almost to zero and lighter 
actuators may be used [36–38]. This work extends this idea to 
the case of dynamic actuation for morphing structure applications, 
where negative stiffness is optimally used to reduce the natural 
frequency of the morphing blade so that it can resonate at a de-
sired actuation frequency.

Fig. 1 shows the integration of passive energy balancing for 
morphing blades with a fixed speed of the rotor. The spiral pulley 
negative stiffness mechanism has been arranged along the span-
wise direction of the morphing blade. The morphing will be oper-
ated at one cycle per revolution, so that the operating frequency is 
fixed. Therefore, the negative stiffness mechanism can be designed 
to tailor the natural frequency of the blade to generate resonance.

A numerical investigation of a 2D harmonically morphed rotor 
airfoil during a pitching motion has been undertaken by Komp et 
al. [39,40], where the reference Bo 105 rotor operates at 420 RPM 
(7 Hz). The rotor blades undergo the usual cyclic pitching motion 
α (t), with an additional time-varying magnitude of camber mor-
phing d (t). The harmonic motion is described by

α (t) = αmean + αhpp sin (2πt fα)

d (t) = dmean + dhpp sin (2πt fd + ϕd) ,
(1)

where α is the mean pitch amplitude and d is the vertical trailing-
edge tip deflection, ϕd is the initial phase shift and fα and fd
are the actuation frequencies of the pitch cycle and the morphing 
camber, and are equal to the rotor frequency.

The resulting time-histories of airfoil pitch and the resultant 
trailing edge tip deflection profiles are illustrated in Fig. 2. This 
led to the change in thrust distribution shown in Fig. 3. The rotor 
thrust is increased on the retreating side due to the camber deflec-
tion, resulting in increased loading on the lateral sides of the rotor 
disk and a decrease over the front and aft sections. Therefore, a 
harmonically morphed rotor aerofoil during the pitching cycle over 
a rotor revolution can significantly improve rotor efficiency.

This work extends the work on harmonically morphed rotor 
aerofoils by developing means to incorporate negative stiffness into 
the system for dynamic tailoring, a process we refer to as Res-
onant Passive Energy Balancing. While this is a similar idea to 
the quasistatic Passive Energy Balancing presented previously, the 
objective is now to facilitate resonance with a negative stiffness 
mechanism, rather than simply drive stiffness to near zero as in 
the quasistatic case.

The effect of simple passive energy balancing with an assumed 
cubic stiffness applied to a classical mass-spring-damper system is 
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Fig. 1. Schematic showing integration of passive energy balancing for morphing blades. The prestretched spring, spiral pulley, and bevel gear are integrated into leading edge 
of blades and morphing is operated at once per rev.
Fig. 2. Example pitching motion and morphing actuation profile over a pitch period 
[41].

presented first. It is shown that the nonlinearity has two important 
benefits; firstly, it restricts the amplitude that can be reached at a 
fixed forcing frequency, unlike a linear resonance which can lead to 
dangerously high amplitudes. Secondly, it can be shown that allow-
ing some nonlinearity reduces the amount of stored elastic energy 
required for the negative stiffness mechanism, and this leads to 
lower mass. Then, the case of a camber morphing blade is con-
sidered. In order to analyse the dynamic tailoring of a morphing 
camber by using negative stiffness, a spiral pulley negatives stiff-
ness mechanism is chosen to provide different cases for stiffness 
tailoring. Finally, the morphing camber is investigated using a can-
tilever beam to represent the trailing edge structure of the blade. 
To achieve dynamic tailoring, the spiral pulley negative stiffness 
mechanism is parameterised to trim the stiffness of the morphing 
camber. Elastic beam theory is used to describe its behaviour and 
a linear negative stiffness element is considered. Then, a nonlinear 
negative stiffness mechanism is used to provide more stability and 
reduced energy storage to the morphing camber blade. The results 
show that the dynamic behaviour of the morphing camber can be 
tailored by using a negative stiffness mechanism, resulting in sig-
nificant reductions in required actuation power.

2. Forced oscillations with nonlinear response

Previous works [36–38] have considered the use of Passive En-
ergy Balancing for elastic, quasistatic applications. This section will 
consider how the design of the Passive Energy Balancer (PEB) 
changes, when the dynamic forces of inertia and damping are con-
3

sidered. A PEB mechanism consisting of an assumed cubic stiffness 
is applied to a classical mass-spring-damper system, hence incor-
porating inertia, damping and nonlinearity in the simplest possible 
way. This is then used to highlight the ways our view of PEB 
changes when these dynamic terms are considered, and develop 
the concept of Resonant Passive Energy Balancing.

Fig. 4 shows the system under consideration. The equation of 
motion of this system can be rewritten as

fa (t) = mẍ + csẋ + ksx + kn1x + kn3x3 (2)

where fa (t) is the force provided by the actuator, and m, cs and 
ks are respectively the mass, damping coefficient and stiffness as-
signed to the structure that we wish to actuate. The terms knl
and kn3 are the linear and cubic coefficients of a negative stiff-
ness device attached in parallel to the structure, in order to reduce 
the overall stiffness that the actuator must work against. In prin-
ciple, the spiral pulley device is able to produce arbitrary force-
displacement characteristics. However, smooth characteristics are 
preferred to ensure the pulley geometry may be manufactured eas-
ily; hence the use of low degree polynomials. A quadratic stiffness 
term is avoided to ensure symmetry in the nonlinear stiffness.

For simplicity, the motion of the mass is prescribed to be

x (t) = X cos (	t) (3)

where 	 is the angular frequency of operation. Therefore, by sub-
stituting Eq. (3) into Eq. (2) we obtain

fa (t) =
(

−	2m + ks + kn1 + 3

4
kn3 X2

)
X cos	t

− cs	X sin	t + 1

4
kn3 X3 cos 3	t (4)

The instantaneous power exerted by the actuator on the mass 
is given by

pi = faẋ (5)

which on substitution of Eqs. (3) and (4) becomes

pi = 	X2

2

[
−
(

−	2m + ks + kn1 + 1

2
kn3 X2

)
sin 2	t

+ cs	(1 − cos 2	t)
]
− kn3	X4

8
sin 4	t (6)

Alternatively, we could consider the average power exerted 
upon the mass given by
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Fig. 3. Polar plots illustrating the rotor thrust from active camber actuation (a) baseline (b) active camber [40].
Fig. 4. The single degree of freedom model of the nonlinear mass-spring-damper 
system.

pi = 	

2π
W0 (7)

where W0 is the work per actuation cycle given by

W0 =
∮

fadx =
T∫

0

faẋdt =
T∫

0

pidt (8)

where T = 2π/	 is the period of actuation. Evaluating Eq. (8) with 
Eq. (6) substituted, it is clear that the integrals of all trigonometric 
terms are zero, leaving

W0 = πcs	X2 (9)

This result suggests that passive energy balancing will not af-
fect the average power consumption of the actuator. However, this 
ignores the fact that most actuators are not regenerative, mean-
ing that they do not recover energy, and therefore do not perform 
negative work when pi is negative. In fact, Eq. (9) shows the min-
imum possible work per cycle, or in other words the proportion 
of work that cannot possibly be reduced by passive energy balanc-
ing. To get a more reasonable estimate of work or power, we need 
to ensure that when the instantaneous power is negative, the re-
sulting energy is simply dissipated and is not available for useful 
effort later. To capture this effect in the simplest way we simply 
zero any negative power, and hence we can define the Positive In-
stantaneous Power (PIP) function as follows:

p+ =
{

pi, pi > 0
0, pi ≤ 0

(10)

This leads to the positive work over a cycle by modifying Eq. (8)
to give

W+ =
T∫

p+dt (11)
0

4

Note that W+ could be found by integrating pi and excluding 
any negative regions from the integral. This can be approximately 
solved by neglecting the 4	 harmonic term and time shifting the 
solution to get pi in the form pi = P cos 2	t + P0. Symmetry 
and periodicity can then be exploited to obtain

W+ ≈ 4

t∗∫
0

pidt = 2

(
P

	
sin
(
2	t∗)+ 2P0t∗

)
(12)

where

P = 	X2

2

√(
−	2m + ks + kn1 + 3

4
kn3 X2

)2

+ (cs	)2 P0

= cs	
2 X2

2
(13)

and t∗ is the time from the maximum instantaneous power to the 
zero crossing of pi , or to the minimum of pi if there is no zero 
crossing, given by

t∗ =
{

cos−1 (−P0/P )/2	, P > P0
π/2	, P ≤ P0

(14)

For further insight, let us assume a nondimensional system, 
where m = ks = X = 1 and cs = 0.2, hence the underlying system 
has a natural frequency of ωn =√ks/m = 1 and a damping ratio of 
ξ = cs

2
√

ksm
= 0.1. Let us also imagine that we wish to actuate this 

system at 	0 = 0.5, i.e. at half its natural frequency. In order to 
achieve resonant actuation at our chosen frequency 	0, we choose 
kn1 and kn3 to zero the effective linear stiffness in Eq. (4), i.e.

−	2
0m + ks + kn1 + 3

4
kn3 X2 = 0 (15)

For an initial demonstration, let us consider when Eq. (15) is 
solved by kn1 = −0.9 and kn3 = 0.2.

Fig. 5 shows the actuator work per cycle of a nondimensional 
system, compared to a system with a PEB optimised for actuation 
at half the natural frequency, showing that there are substantial 
power savings at all frequencies up to and slightly beyond the tar-
get frequency. The performance is however limited by the system 
damping. It shows that the Resonant Passive Energy Balancing will 
provide substantial power savings at this frequency and below. Un-
surprisingly, as we progress to frequencies above our chosen reso-
nance, the performance rapidly deteriorates until it is poorer than 
the unassisted system. This is the region where dynamic actuation 
forces are dominated by inertia and hence stiffness reduction is of 
no benefit.



J. Zhang, A.D. Shaw, C. Wang et al. Aerospace Science and Technology 128 (2022) 107786
Fig. 5. Work per cycle of a nondimensional linear system at different frequencies, 
compared with a system with a PEB optimised for actuation at frequency 	0 =
ωn/2. The lower (minimal) line shows the work predicted by Eq. (14).

Fig. 6. The amplitude-frequency characteristic curves.

The response sensitivity of a nonlinear system can be studied 
by considering the forced system

mẍ + csẋ + ksx + kn1x + kn3x3 = F cos	0t (16)

and assuming that x (t) = X cos (	0t + ϕ). The relationship be-
tween the system parameters and the external force amplitude is((

ks − 	2
0m
)

+ kn1 + 3

4
kn3 X2

)2

+ (cs	0)
2 = F 2

X2 (17)

Since we want a hardening nonlinear response, we know that 
3
4 kn3 X2 is a positive term. Fig. 6 shows the frequency-response 
curve for different actuation amplitude F for the single degree of 
freedom model. It can be seen that the nonlinearity provides a 
hardening stiffness for the system, i.e. kn3 > 0. As such nonlinearity 
can prevent excessive change of response amplitude if the actua-
tion amplitude is changed, which ensures the output is within a 
reasonable range. For example, if the system is designed to pro-
duce an output X = 1.6 and under an actuation frequency of 0.5 
with amplitude F = 1.6, even if the actuation amplitude changed 
by 50%, the variation in output amplitude is less than 10%, as 
shown in Fig. 6. This means that a nonlinear resonance can be far 
more consistent in its response than a linear one, in the presence 
of uncertainty regarding excitation amplitude and damping.

Unfortunately, a nonlinear system can also introduce unpre-
dictability into the response in the form of multiple responses to 
harmonic forcing between the jump up and dropdown frequencies 
[42]. This presents a difficulty for the nonlinear resonant actua-
tion concept, as the risk of losing resonance and receiving much 
5

Fig. 7. Schematic of the morphing camber model, δ f is rotation angle of spooling 
pulley to produce a moment at the trailing edge.

lower response amplitude would be unacceptable. However, Fig. 6
also shows that there is a region of substantial resonance near the 
assumed actuation frequency that avoids this problem, so long as 
the response does not stray too far into the region of highly stiff-
ened nonlinear response. Indeed the nonlinearity and actuation 
frequency should be carefully chosen to avoid multiple solutions 
and unstable responses.

3. Morphing camber with a negative stiffness mechanism

3.1. The morphing camber model

Resonant Passive Energy Balancing has been demonstrated the-
oretically for a classical mass-spring-damper system in Section 2. 
This section extends the concept to a morphing camber section. 
The negative stiffness mechanism will be investigated with both 
linear negative stiffness and nonlinear negative stiffness. The mor-
phing concept known as the fish bone active camber (FishBAC) [21]
is chosen as the target structure for study. Fig. 6 shows schemat-
ically the forces and moments generated by the tendons due to 
pulley rotation, the corresponding magnitudes of which have been 
derived in [32].

Fig. 7 shows the morphing camber model that consists of two 
chord segments, the front segment is a non-morphing D spar and 
the rear segment is a biologically inspired compliant structure. The 
rear segment is clamped to the non-morphing D spar that can be 
considered rigid. Therefore, the rear segment can be considered 
as a cantilever beam and elastic beam theory is used to describe 
its behaviour as shown in Fig. 8. The rear segment is actuated by 
the tendons attached to the trailing edge strip, and connected to a 
rotor actuator located in the D spar.

The total bending moment applied to the trailing edge by both 
tendons is

Mten = 2kten�lten yten = κ
�lten

r f
= κδ f (18)

where yten is tendon mounting offset, kten�lten is the force in the 
tendon, r f is the spooling pulley radius and κ = 2kten ytenr f is a 
constant. Equation (18) shows that the compliant FishBAC camber 
can be considered as a positive stiffness system, and the required 
torque is proportional to the rotation angle. Therefore, the dynamic 
property of the morphing camber can be tailored by using an opti-
mised negative stiffness mechanism. A second pair of tendons are 
attached to the beam at xl and couple it to the negative stiffness 
device, as shown in Fig. 8. So the rear segment can be consid-
ered as a two-part system, namely, the length before the mounting 
point 0 < x < xl and the length after the mounting point xl < x < l.

3.2. Negative stiffness mechanism in a rotating blade system

The chosen negative stiffness mechanism is a spiral pulley neg-
atives stiffness device, as shown in Fig. 9. A linear spring is used 
to store energy and produce actuating force. As the spiral pulley 
rotates, its effective diameter changes and the moment arm pro-
duced by the profile of the spiral pulley varies. This effect can 
be tailored to give negative stiffness that counteracts the positive 
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Fig. 8. Schematic representation of a morphing aircraft with assisted negative stiffness design.
Fig. 9. Schematic of the spiral pulley negative stiffness mechanism for morphing 
aircraft actuation.

stiffness of the actuated structure and is optimised for a given ac-
tuation role. It is hard to satisfy both the actuation requirement 
and the limited space to develop an energy balancing system for 
large morphing aircraft requirements. Therefore, in order to im-
prove the integrated performance of the total energy balancing 
system, a gear is proposed as an additional parameter to produce 
larger tolerances for reducing the dimension of the system. The 
schematic of the whole system is shown in Fig. 9, from an initial 
configuration to an actuated configuration.

The spiral pulley is defined as an exponential radius profile in 
polar coordinates about the centre of rotation

r = r0 + k1ek2(θ+δ+δ0) (19)

where δ is spiral pulley rotation angle and θ is an associated off-
set angle; δ0 is the initial pulley rotation angle, and r0, k1 and k2
are parameters of the spiral profile. The spring is designed as an 
energy storage device with an initial extended length L0 and K is 
the spring constant. xoff and yoff are x-direction and y-direction 
offsets of the spiral pulley mount.

An extra difficulty occurs because the spiral pulley negative 
stiffness mechanism is implemented in a rotating blade system, as 
shown in Fig. 1. The pre-stretched spring locates along the span of 
the blade and the mass of the spring has an extra centrifugal force, 
as shown in Fig. 10. When the spring is stretched along the span 
of the blade, a centrifugal force exists along the spring that re-
duces the restoring force, which can significantly change the force 
applied to the spiral pulley. In what follows, the effective stiffness 
6

Fig. 10. Schematic of the spiral pulley negative stiffness mechanism for a morphing 
rotating blade.

of the spring is investigated by considering the angular speed of 
the rotating blade.

Fig. 10 shows a spring with a stiffness K that is extended along 
the span of a blade under the angular speed 	 f and the cen-
tripetal load of spring, Fc . The equation of motion can be obtained 
as

Es As
d2u

dx2
+ ρs As	

2
f (lh + xs + us) = 0 (20)

where ρs As and Es As are the mass unit length and effective axial 
stiffness of the spring, and lh is the offset position of the spring. 
us is deformation of spring caused by centrifugal force.

Let

λ2 = ρs As	
2
f

EA
= ρs As	

2
f

k0ls
(21)

where K = Es As/ls and ls is the initial length of the spring. Then

d2us

dx2
s

+ λ2 (lh + xs + us) = 0 (22)

Thus, the general solution for the deformation of spring u
caused by centrifugal force is

us = − (lh + xs) + A0 sinλxs + B0 cosλxs (23)

Using the boundary conditions us (xs = 0) = 0 and us (xs = ls) =
ul , the constants in Eq. (23) can be obtained as
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Table 1
Initial stiffnesses of the chosen springs.

Part Number ((Ashfield Spring Ltd) S.74 S.87 S.100 S.111 S.114
Stiffness (N/m) 770 920 1060 2000 3090
Estimated Mass per Unit Length (kg/m) 0.3911 0.6582 0.8630 1.2954 1.5399
Fig. 11. Equivalent stiffness of the chosen springs under rotation (legend indicates 
the part number of the spring).

A0 = 1

sinλls
[ul + lh + ls − lh cosλls] , B0 = lh (24)

We are interested in the force at xs = ls , which is

Txs=ls = EA
dus

dxs

∣∣∣∣
xs=ls

= Kl
dus

dxs

∣∣∣∣
xs=ls

= Kls {−1 + A0λ cosλls − B0λ sinλls} (25)

Two interesting features of Eq. (25) are now highlighted. For 
λ = 0 (i.e. no rotation) then Tx=l = K ul as expected. Extracting 
the term linear in ul shows that the total stiffness is K λls

tanλxs
and 

so the reduction in stiffness due to the rotation is K
{

1 − λls
tanλls

}
, 

which is approximately 1
3 K (λls)

2 for small λls . The ratio of equiv-
alent stiffness kω to static stiffness K can be expressed as

kω = K − K λls
tanλls

K
= 1 − λls

tanλls
(26)

Based on the analysis of equivalent stiffness, some commer-
cially available springs have been investigated with an identical 
pre-stretch length of 50 mm. The initial stiffness and part num-
ber of the chosen springs from Ashfield Spring Ltd are listed in 
Table 1, the stiffnesses range from 700 to over 3000 N/m and the 
offset length lh = 0.

Fig. 11 shows how the equivalent stiffness changes with in-
creasing rotation speed. The equivalent stiffness decreases with 
increasing angular speed, and so a higher initial stiffness must be 
chosen to design a spiral pulley negative stiffness mechanism for a 
morphing blade.

In order to show that different negative stiffness characteristics 
can be designed for the spiral pulley mechanism, three cases are 
investigated for dynamic tailoring of morphing camber, quasistatic 
passive energy balancing (case 1), linear stiffness tailoring (case 2) 
and nonlinear stiffness tailoring (case 3). For a positive stiffness ac-
tive system, the extra negative stiffness mechanism will effectively 
reduce actuation effort by using stored energy to achieve passive 
energy balancing. The quasistatic passive energy balancing means 
these two systems will be combined together so that they can can-
cel each other to produce a near-zero stiffness system when the 
system is actuated in a quasistatic condition. The linear stiffness 
7

Table 2
Parameters for the negative stiffness mechanisms.

Parameter Case 1 Case 2 Case 3 Units

Initial radius, r0 −0.0224 −0.0151 −0.0187 m
Pre-exponent term, k1 0.0154 0.0088 0.0054 −
Exponent term, k2 0.2135 0.2518 0.5251 −
Initial pulley rotation angle δ0 −12pi/180 −3pi/180 6pi/180 rad
Drive spring extension, L0 0.3254 0.2062 0.1582 m
Drive spring rate, K 766.1927 766.2995 766.2895 N/m
Gear ratio, G 4.3309 4.2294 3.7029 −
xoff −0.0005 0.0030 −0.0003 m
yoff 0.0268 0.0227 0.0133 m

tailoring means the extra negative stiffness mechanism will effec-
tively cancel part of a positive stiffness active system to produce a 
reduced stiffness system. This is valuable for morphing structures 
where the structures support significant loads during frequent ac-
tuation. The linear stiffness tailoring used here means the positive 
stiffness is cut in half as an example. A further improvement is 
nonlinear stiffness tailoring which adds nonlinearity to the linear 
stiffness tailoring to produce a nonlinear hardening resonance. The 
spiral pulley negative stiffness mechanism has been used to pro-
vide a satisfactory result for quasistatic passive energy balancing, 
as shown in Fig. 12(a) [38]. It can be seen that the torque pro-
vided by the spiral pulley negative mechanism matches the torque 
required closely, and the maximum torque required by the addi-
tional actuator is less than 2.5 Nm. The performance predicted for 
the optimised spiral pulley profile is satisfactory and matches the 
linearised torque requirements well.

The proposed spiral pulley negative stiffness mechanism is then 
extended to provide a target linear stiffness of the system, which 
results in an effective reduced stiffness design of morphing cam-
ber, as shown in Fig. 12(b). It can be seen that the tailored torque 
curve (solid) matches the target curve (dash) closely, which pro-
vides an effective reduced stiffness of the combined system. Fi-
nally, nonlinearity is added to the linear stiffness design of morph-
ing camber by using a spiral pulley negative stiffness mechanism 
for dynamic tailoring. Fig. 12(c) shows that by using the spiral pul-
ley negative stiffness mechanism, an effective hardening nonlinear 
stiffness can be obtained for the morphing camber. The nonlinear 
optimiser fmincon in the MATLAB Global Optimization Toolbox was 
used to optimise the objective function. The resulting parameters 
of the three cases are shown in Table 2.

Fig. 12 shows that the evolution of torque with rotation for the 
spring and the FishBAC and the net torque of the whole system. 
Part (a) shows the ‘energy balancing’ case described in previous 
work [38], which does not consider dynamic response, and largely 
eliminates the structural stiffness of the system. Part (b) indicates 
the new approach in which the stiffness of the system is not elim-
inated, but reduced to give a desired resonant frequency to assist 
dynamic actuation, assuming that a negative linear stiffness term 
can be applied. Part (c) shows the same, but with the more de-
sirable assumption of an optimised nonlinear stiffness applied via 
the spiral pulley system.

Based on the investigation of this study, it can be seen that the 
spiral pulley negative stiffness mechanism provides a significant 
contribution to tailor the positive stiffness system (i.e. FishBAC). 
While the optimised parameters of the spiral pulley obtained here 
are only simulated, they provide insight into different effective 
stiffnesses of the combined system, both linear and nonlinear. It is 
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Fig. 12. (a) Passive energy balancing [38]. (b) Linear stiffness tailoring. (c) Nonlinear stiffness tailoring.
shown that the negative stiffness is scalable and highly tailorable 
to allow for different conditions. Therefore, a further investigation 
will link the negative spiral pulley system to the morphing aero-
foil as a passive energy balancing system to reduce the required 
load through resonant actuation. The negative spiral pulley system 
is parameterised by a negative stiffness constant to show how it 
will influence the dynamic characteristics of the morphing camber 
system in the following section.

The extended spring is used here to store energy and produce 
actuating force. As the spiral pulley rotates, its effective diameter 
changes, and the moment arm produced by the profile of the spi-
ral pulley varies, so that the desired torque could be produced. 
Therefore, the spring is always in tension in the whole actuation 
process which means that only part of the initial extension length 
is released and the spring will be still extended after actuation. 
In other word, the tensioning force always exists in the negative 
stiffness system.

This being the cause, issues such as free play can be avoided 
because the system is always under tension.

4. Resonant passive energy balancing

4.1. Linear resonant passive energy balancing

In order to investigate the resonant passive energy balancing 
for morphing camber actuation, the FishBAC morphing camber is 
recalled here for study. Note that in this analysis, no detailed mod-
elling of aerodynamic forces acting on the morphing section is 
included; it is believed that such effects could be roughly cap-
tured through equivalent additions to the structural stiffness and 
damping and would not affect the overall conclusions of this work, 
with more sophisticated modelling as the topic of future work. The 
equation of motion of the morphing segment shown in Fig. 8 has 
the form

EI
∂4 w

∂x4
+ ρ(x)

(
∂2 w

∂t2

)
= 0 (27)

Therefore, the location of the negative stiffness mechanism 
mounting point is investigated in order to provide a full range of 
target frequency. The traditional differential equation of motion has 
the compatibility conditions at x = xl as

w1

(
xL

l , t
)

= w2

(
xR

l , t
)

,
∂

∂x
w1

(
xL

l , t
)

= ∂

∂x
w2

(
xR

l , t
)

,

∂3

∂x3
w1

(
xL

l , t
)

= ∂3

∂x3
w2

(
xR

l , t
)

, (28a)

∂2

∂x2
w1

(
xL

l , t
)

− ∂2

∂x2
w2

(
xR

l , t
)

= −k
∂

∂x
w1

(
xL

l , t
)
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where k = k/EI, and k is a parameterised negative torsional stiff-
ness derived from the spiral pulley negative stiffness mechanism. 
w1 and w2 represent the displacements forward and aft of the 
tendon connection point, and the superscripts L and R represent 
the location just to the left or right of xl .

The other boundary conditions are

w1 (0, t) = 0,
∂

∂x
w1 (0, t) = 0,

∂2

∂x2
w2 (l, t) = 0, (28b)

∂3

∂x3
w2 (l, t) = 0

The general solution for the displacement w1 of first subsystem 
and w2 of first subsystem can be expressed as

w1 (x, t) =
n∑

j=1

φ1 jξ1 j

w2 (x, t) =
n∑

j=1

φ2 jξ2 j

(29)

where φ are the basis functions and ξ are generalised displace-
ments. The general mathematical expressions for φ1 j and φ2 j are 
given by

φ1 j = A1 j sinβ jx + B1 j cosβ j x + C1 j sinh β j x + D1 j cosh β jx

φ2 j = A2 j sinβ jx + B2 j cosβ j x + C2 j sinh β j x + D2 j cosh β jx

(30)

The wave numbers β j can be found from the roots of the tran-
scendental equation in Appendix A.

Fig. 13 shows the tailored frequency by using different negative 
stiffnesses k and different assisted locations xl of the morphing 
camber. Fig. 13(a) shows the first three natural frequencies when 
k = 30 and highlights that the 2nd and 3rd modal frequencies vary 
by less than 1%. Therefore, only the first natural frequency of a 
camber morphing system has a distinct tailoring and the reduc-
tion of the tailored frequency is gradual as the assisted location is 
changed, which is shown in Fig. 13(b). Therefore, a full range of 
target frequencies can be tailored by using the negative stiffness 
mechanism at the selected connection location.

Now, a detailed case by using the negative stiffness for an actu-
ated morphing camber model under a bending moment is consid-
ered. The schematic of the actuated morphing camber model can 
be seen in Fig. 7 as well as the total bending moment applied to 
the trailing edge. As the moment is applied at a single point on 
the trailing edge strip, the traditional equation of motion of the 
morphing segment has the form

EI
∂4 w

4
+ c

∂ w + ρ (x)

(
∂2 w

2

)
= −Mten

d
δ (x − xl) (31)
∂x ∂t ∂t dx



J. Zhang, A.D. Shaw, C. Wang et al. Aerospace Science and Technology 128 (2022) 107786

Fig. 13. Results of the assisted negative stiffness design (different negative linear terms and different assisted locations), ω is the ratio of PEB assisted and unassisted natural 
frequencies. (a) k = 30. (b) First tailored frequency.
Fig. 14. Results of the assisted negative stiffness design at the tip of morphing cam-
ber. ω is the frequency ratio (PEB assisted)/unassisted.

where δ is the Dirac delta function.
Meanwhile, it is assumed that the negative stiffness is mounted 

at the tip coincident with the location of the actuation moment, 
i.e. xl = L, and the boundary conditions can be summarised as

w (0, t) = 0, w ′ (0, t) = 0, EIw ′′′ (xl, t) = 0,

w ′′ (xl, t) = −kw ′ (xl, t) (32)

where the prime indicates the derivative with respect to position x, 
ρ(x) is the linear density and k = k/EI, where k is a parameterised
negative torsional stiffness derived from the spiral pulley negative 
stiffness mechanism.

The natural frequency of the morphing camber model can be 
solved by dropping the moment term and using the basis func-
tions φ1, φ2, . . . φ j and generalised displacements ξ1, ξ2, . . . ξ j (Ap-
pendix B). The wave numbers β j in the basis functions can be 
found from the roots of the following transcendental equation:

k = β j
1 + cosβ j L cosh β j L

cosβ j L sinh β j L + cosh β j L sinβ j L
. (33)

Fig. 14 shows that a linear negative stiffness mechanism pro-
vides a significant contribution to reduce the first natural fre-
quency of a camber morphing system, but has little influence on 
the higher modes. Moreover, the tailored frequency reduces grad-
ually for smaller k and then the sensitivity becomes much larger. 
It’s worth noting that if the natural frequency is very sensitive to 
variations in the stiffness, the target frequency is cannot be too 
small. In addition, the quasi-static PEB occurs when ω = 0, where 
9

in principle no energy is required to move the system, other than 
to overcome dissipation and inertia [36,37]. For larger negative 
spring stiffnesses, i.e. beyond the quasi-static PEB point, the sys-
tem is unstable.

Based on the results shown in Fig. 14, the morphing camber 
is considered to generate resonance actuation by using a nega-
tive stiffness mechanism under a bending moment excitation. It is 
assumed that the morphing segment is excited by a harmonic mo-
ment M (t) of amplitude M0 and frequency ω f . Therefore, Eq. (32)
becomes, in model coordinates,

ξ̈ j (t) + 2ζ jω j ξ̇ j (t) + ω2
j ξ j (t) = M (t)φ′

j (xl) (34)

where ζ j = c/2ω j .
The steady solution of Eq. (34) is

ξ j (t) = Bα sin
(
ω f t + θ

)
(35)

where B = M (t)φ′
j (x1)/ω

2
j , α = 1/

√(
1 − ω2

j

)2 + (2ξ jω j
)2

, θ =
tan−1

(
2ξ jω j/

(
1 − ω2

j

))
and ω j = ω f /ω j .

The energy dissipated by damping for the steady solution 
Eq. (35) becomes

Wd =
T∫

0

2ζ jω j
(
ξ̇ j (t)

)2
dt

=
2π/ω f∫

0

(Bα)2 2ζ jω jω
2
f cos2 (ω f t + θ

)
dt

= 2π (Bα)2 ζ jω jω f (36)

where Wd is the energy dissipated by the damper. By considering 
the instantaneous power exerted by the actuator to the structure 
discussed in Eq. (5), so the input energy W+ from the actuator 
over one cycle of actuation can be given by Eq. (8) as

W+ =
T∫

0

p+dt

=
2π/ω f∫

0

∣∣∣(M0φ
′
j (xl)

)
ω f Bα sinω f t cos

(
ω f t + θ

)∣∣∣dt

= 1

2

(
M0φ

′
j (xl)

)
ω f Bα

(
sin θ

π + 2θ

ω f
+ 2

1

ω f
cos θ

)
(37)
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Fig. 15. Results of an assisted negative stiffness design for different negative linear 
terms. W = W+/Wd and W in = W+/min W+ .

Fig. 15 shows an example case under actuation at half of its 
unassisted first natural frequency and three indices have been 
shown, namely Bα, W and W in . Bα is the amplitude of the steady 
solution shown in Eq. (35), which is used to evaluate the output 
under the same actuation. W represents the mean energy dis-
sipated, that is ratio between the input and dissipated energies, 
which is used to evaluate the reduction in the required work for 
a constant required output. W in is the normalised W+ , given by 
the ratio between the required input energy and the minimum 
energy, min W+ , that is dissipated by the damper. In order to gen-
erate resonant actuation, a PEB is used to assist the actuation at 
the frequency 	0 = ωn/2, i.e. when k = 42. It can be seen that a 
larger output Bα can be obtained if the same actuation is applied. 
Furthermore, the resonant actuation requires minimum work to as-
sume a constant required output, which is shown by W and W+ . 
Thus min W+ is equal to Wd at resonance, which supports the dis-
cussion in Section 2 that the performance of the system is limited 
by the system damping.

4.2. Resonant passive energy balancing with nonlinearity

Fig. 14 shows that the negative stiffness mounting point is best 
located near the tip of a morphing camber, which can provide a re-
liable means to tailor the target frequency, if this frequency is not 
too small. However, through the results of Section 2, it is known 
that at a nonlinear resonance, the amplitude is limited by both 
the nonlinearity and the damping, giving a response that is more 
robust in the presence of damping and forcing uncertainties than 
a linear resonant response. Therefore, nonlinearity will be intro-
duced into the negative stiffness element. Here, a cubic term is 
added and expressed as

EI
∞∑
j=1

φ′′
j (xl) ξ j = −k

∞∑
j=1

φ′
j (xl) ξ j + kn

⎛
⎝ ∞∑

j=1

φ′
j (xl) ξ j

⎞
⎠

3

(38)

where xl = L. Equation (38) presents a modified boundary con-
dition from Eq. (32), considering the nonlinearity. In order to 
investigate the dynamic response of a nonlinear negative stiff-
ness assisted morphing blade, Eq. (34) and the boundary condi-
tions, Eq. (38), can be approximated by assuming that ξ j (t) =
Q j sin

(
ω f t + θ j

)
. Thus, using the harmonic balance method (HBM) 

[43], gives
10
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R1 :=
(
ω2

j − ω2
f

)
Q j sin θ j − 2ζ jω jω f Q j cos θ j

−M0φ
′
j (x1)/m j = 0

R2 :=
(
ω2

j − ω2
f

)
Q j cos θ j + 2ξ jω jω f Q j sin θ j = 0

R3 := φ′′
j (xl) + kφ′

j (xl) − 3
4 kn

(
φ′

j (xl)
)3

Q 2
j = 0

(39)

where Q j , θ j and ω j are unknowns. R1 and R2 are two algebraic 
equations derived from the harmonics to solve two unknowns Q j
and θ j . R3 is a supplementary equation from boundary condition, 
i.e. Eq. (38), and this equation is coupled with the unknowns Q j , 
so that the unknown ω j may be calculated to ensure resonance by 
solving the simultaneous equations.

Solving Eq. (39) yields⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
ω2

j − ω2
f

)
Q j

)2 + (2ζ jω jω f Q j
)2 =

(
M0φ

′
j (x1)/m j

)2

cos θ j = 2ζ jω jω f Q j

−M0φ′
j(x1)/m j

, sin θ j =
(
ω2

j −ω2
f

)
Q j

M0φ′
j(x1)/m j

φ′′
j (xl) + kφ′

j (xl) − 3
4 kn

(
φ′

j (xl)
)3

Q 2
j = 0

(40)

where Q j is the amplitude and θ j is the phase of the response. 
Solving Eq. (40) for ω f gives the frequency amplitude relationship 
as

ω2
f =

(
ω2

j +
(
2ζ jω j

)2

2

)

±
⎛
⎜⎝−ω2

j

(
2ζ jω j

)2 +
(
2ζ jω j

)4

4
+
(

M0φ
′
j (x1)/m j

)2

Q 2
j

⎞
⎟⎠

1
2

(41)

where Eq. (41) gives the response of the system in the region 
where multiple stable solutions may exist.

Fig. 16 shows the frequency-response curve for different values 
of actuation amplitude M0, for both the linear and nonlinear sys-
tems. A linear resonant system can provide the largest amplitude, 
and the nonlinearity kn reduces the amplitude and makes the sys-
tem harden. However, the existence of the nonlinearity can give 
a response that is more robust in the presence of damping and 
forcing uncertainties than a linear resonant response. The target 
amplitude Q = 0.15 is actuated by an assumed actuation ampli-
tude M0 = 0.5 at a desired actuation frequency. Fig. 16(b) shows 
that when the actuation is changed, the resonant system gives a 
relatively small change in output amplitude with nonlinearity com-
pared with the doubling of output amplitude from the linear sys-
tem shown in Fig. 16(a). Namely, the variability of response (grey 
dashed line) is smaller if nonlinearity is introduced in a resonant 
actuation system. When the actuation amplitude changes from 0.4 
to 1, the variation of the output amplitude is 0.12 to 0.3 in the 
linear resonant system but only 0.12 to 0.18 in the nonlinear res-
onant system. Therefore, the selected nonlinearity in the negative 
stiffness mechanism used to generate resonant actuation can re-
duce the required actuation and stabilise the system.

Moreover, Fig. 16 shows the results of a morphing blade with 
a PEB optimised for actuation at frequency ω f = ωn/2, i.e. rotor 
frequency. Meanwhile, the morphing will be operated at one cycle 
per revolution, which means the actuator frequency is equal to the 
rotor frequency. Therefore, the natural frequency of the blade is 
tailored by the negative stiffness mechanism to give the actuation 
frequency for resonance.

This example shows that nonlinearity can help to stabilise the 
system even if the actuation power fluctuates. Therefore, although 
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Fig. 16. Frequency response. (a) linear negative stiffness (b) nonlinear negative stiffness kn/k = 0.1.
a quasi-static PEB system with a zero stiffness characteristic can 
be easily influenced by small disturbances, adding nonlinearity can 
avoid such a problem. Hence, the negative stiffness mechanism can 
be optimised by considering the nonlinearity required to generate 
a desired amplitude.

5. Conclusion

A new concept to generate resonant passive energy balancing 
for a morphing blade has been presented. The novelty of this con-
cept is to reduce the natural frequency of a structure to a desired 
actuation frequency by using a designed negative stiffness. A spiral 
pulley system has been proposed as the negative stiffness mecha-
nism to achieve linear frequency tailoring and nonlinear frequency 
tailoring. The equivalent stiffness of the extended spring used in 
the negative stiffness mechanism has been investigated by consid-
ering the centrifugal force. The dynamic characteristics of a forced 
system using an additional negative stiffness element are studied, 
which shows that the actuation power requirement can be re-
duced. In particular, the presence of the negative stiffness has been 
shown to cause effects such as a reduced natural frequency and an 
amplitude dependent natural frequency. The mechanism has been 
considered to provide a linear negative stiffness property, which is 
then extended to include nonlinearity, which can restrict the reso-
nance amplitude. Exploiting such a negative stiffness concept is of 
significant interest in the wide field of energy and power reduction 
applications.
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Appendix A

The general solution for the displacement w1 of first subsystem 
and w2 of first subsystem can be expressed as
11
w1 (x, t) =
n∑

j=1

φ1 jξ1 j

w2 (x, t) =
n∑

j=1

φ2 jξ2 j

(A.1)

The mathematical expression φ1 j and φ2 j of are given by

φ1 j = A1 j sinβ jx + B1 j cosβ j x + C1 j sinh β j x + D1 j cosh β jx

φ2 j = A2 j sinβ jx + B2 j cosβ j x + C2 j sinh β j x + D2 j cosh β jx

(A.2)

Inserting Eqs. (A.2) into compatibility conditions yields⎡
⎢⎢⎣

A2 j
B2 j
C2 j
D2 j

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

u j
11 u j

12 u j
13 u j

14

u j
21 u j

22 u j
23 u j

24

u j
31 u j

32 u j
33 u j

34

u j
41 u j

42 u j
43 u j

44

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

A1 j
B1 j
C1 j
D1 j

⎤
⎥⎥⎦

= U4×4 ×

⎡
⎢⎢⎣

A1 j
B1 j
C1 j
D1 j

⎤
⎥⎥⎦ (A.3)

where⎡
⎢⎢⎢⎣

u j
11 u j

12 u j
13 u j

14

u j
21 u j

22 u j
23 u j

24

u j
31 u j

32 u j
33 u j

34

u j
41 u j

42 u j
43 u j

44

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 sin
(
β j xl

)− k cos
(
β j xl

)
2EIβ j

− cos
(
β j xl

) k cos
(
β j xl

)
2EIβ j

0 cos
(
β j xl

)+ k sin
(
xlβ j

)
2EIβ j

sin
(
β j xl

) − k sin
(
β j xl

)
2EIβ j

− cosh
(
β j xl

) − k cosh
(
β j xl

)
2EIβ j

0 sinh
(
β j xl

)+ k cosh
(
β j xl

)
2EIβ j

− sinh
(
β j xl

) − k sinh
(
β j xl

)
2EIβ j

0 cosh
(
β j xl

)+ k sinh
(
β j xl

)
2EIβ j

⎤
⎥⎥⎥⎦

T

Then, the boundary conditions at x = 0 yield

B1 j + D1 j = 0, A1 j + C1 j = 0 (A.4a)

The boundary conditions at x = xl yield

T2×4 ×

⎡
⎢⎢⎣

A2 j
B2 j
C2 j
D2 j

⎤
⎥⎥⎦=

[
0
0

]
(A.4b)

where



J. Zhang, A.D. Shaw, C. Wang et al. Aerospace Science and Technology 128 (2022) 107786
T2×4 =[
− cos

(
(l − xl)β j

) − sin
(
(l − xl)β j

)
cosh

(
(l − xl)β j

)
sinh

(
(l − xl)β j

)
sin
(
(l − xl)β j

) − cos
(
(l − xl)β j

)
sinh

(
(l − xl)β j

)
cosh

(
(l − xl)β j

) ]

Then, the Eq. (A.4b) can be rewritten by applying Eq. (A.3)

T2×4 ×

⎡
⎢⎢⎣

A2 j
B2 j
C2 j
D2 j

⎤
⎥⎥⎦= T2×4 × U4×4 ×

⎡
⎢⎢⎣

A1 j
B1 j
C1 j
D1 j

⎤
⎥⎥⎦= r2×4 ×

⎡
⎢⎢⎣

A1 j
B1 j
C1 j
D1 j

⎤
⎥⎥⎦

=
[

0
0

]
(A.5)

where

r2×4 =
[

r11 r12 r13 r14
r21 r22 r23 r24

]

Then, from Eq. (A.4a), it can be finally obtained as[
r11 − r13 r12 − r14
r21 − r23 r22 − r24

][
A1 j
B1 j

]
=
[

0
0

]
(A.6)

The requirement for non-trivial solutions for A1 and B1 in 
Eqs. (A.6) produces the characteristic determinant equation for the 
maximum fundamental frequency parameter as

det

[
r11 − r13 r12 − r14
r21 − r23 r22 − r24

]
= 0 (A.7)

Appendix B

The deformation w is expressed as

w (x, t) = φ1ξ1 + φ2ξ2 + · · · =
n∑

j=1

φ jξ j (B.1)

where φ1, φ2, . . . φ j are the basis functions and ξ1, ξ2, . . . ξ j , are 
generalised displacements. The mathematical expression φ j is 
given by

φ j = A j sinβ jx + B j cosβ jx + C j sinh β j x + D j cosh β j x (B.2)

The frequency can be shown as,

ω j = β2
j

√
EI

m
(B.3)

where m = ∫ l
0 φ jρ (x)φT

j dx = 1, the boundary conditions at x = 0
yield

B j + D j = 0, A j + C j = 0 (B.4)

Recall Eq. (B.2) with ignore high order Eq. (B.1) can be ex-
pressed as

φ′′
j (xl) = −kφ′

j (xl) (B.5)

where k = k/EI, k is torsional stiffness. Then, the final condition is

EIβ2
j

[
A j
(
sinβ jl + sinh β jl

)+ B j
(
cosβ jl + cosh β jl

)]
= kβ j

[
A j
(− cos β jl + cosh β jl

)+ B j
(
sinβ jl + sinh β jl

)]
(B.6)

Finally, the wave numbers β j can be found from the roots of 
the following transcendental equation:

k = β j
1 + cosβ jl cosh β jl

cosβ l sinh β l + cosh β l sinβ l
. (B.7)
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