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Abstract: Morphing aircraft structures usually introduce greater compliance into aerodynamic sections, 

and therefore will affect the aeroelasticity with the potential risk of increased flutter. A low-fidelity 

model of an active camber morphing wing and its aeroelastic model are developed in order to investigate 

the potential critical speed by exploiting its chord-wise dimension and flexibility. Such a model may be 

used for conceptual design, where low fidelity models are used to explore and optimise a wide range of 

configurations. The morphing camber concept is implemented using a continuous representation of a 

two-segment structure with a rigid segment and a deformable part. The aeroelastic model is developed 

based on both steady and unsteady aerodynamic models, so that different parameters can be easily 

modified to examine changes in the flutter solutions. Of particular interest are the ratio of the morphing 

segment length to the chord, and its relative stiffness, as such morphing camber is potential operated 

using the deformable part as a flap. By comparing the results of the quasi-steady and unsteady 

aerodynamic models, it is shown that the quasi-steady aerodynamic model gives a more conservative 

prediction of the flutter speed. In addition, responses in phase space are simulated to show the 

fundamental aeroelastic behaviour of the morphing camber wing. It is also shown that the active 

compliant segment can be used to stabilise the morphing aircraft by using feedback control. This paper 

provides a system-level insight through mathematical modelling, parameter analysis and feedback 

control into dynamics applications of morphing camber. 
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Nomenclature: 

𝛼 pitch angle  𝜔𝑖 i th natural frequency of the morphing 

segment 

𝜁1, 𝜁2 proportional damping constants  𝜌 density of morphing camber spine 

𝑏 semi-length of the rigid segment   𝑡ℎ thickness of morphing camber spine 

𝑐 chord   𝑤 transverse displacement of the 

morphing segment 

ℎ plunge displacement at elastic axis  𝑥 position on the morphing segment 

along the chordline 

𝐼𝑟 moment of inertia of the rigid segment  𝑙 length of the morphing camber spine 

𝑘𝜃 pitch stiffness of the rigid segment  𝐴 cross sectional area of the morphing 

segment 

𝑘ℎ plunge stiffness of the rigid segment  𝐸 Young's modulus of the morphing 

camber spine 

𝑚1 mass of rigid part  𝑇𝑠 kinetic energy of the morphing 

segment 

𝑟 distance between elastic axis and rigid 

segment trailing edge 

 𝑈𝑠 strain energy of the morphing segment 

𝑇𝑟 kinetic energy of the rigid segment  𝜌∞ air density 

𝑈𝑟 strain energy of the rigid segment  𝑈∞ flow speed 

𝑥𝑐𝑔 distance between elastic axis and 

centre of gravity 

 CM centre of mass of the rigid segment 

𝑥𝑓 distance between elastic axis and 

leading edge 

 EA elastic axis 

𝛽 frequency parameter of the morphing 

segment 

 𝑃𝑐 circulatory pressure 

𝜃 slope of the morphing segment  𝑃𝑛𝑐 non-circulatory pressure 

𝜉 generalised displacements of the 

morphing segment 

 RE rigid segment trail edge 

𝜙 basis functions of the morphing 

segment 
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1. Introduction 

Advances in the development of smart actuators and compliant structures have led to widespread 

interest in morphing wings [1]. The aircraft system can therefore integrate morphing concepts to allow 

shape changes of the structure, and thus adapt its aerodynamic properties to suit changing mission 

requirements. Morphing aircraft concepts are showing the potential to significantly reduce the mass and 

energy consumption, and improve flight performance, compared to traditional aircraft structures, and 

hence they are receiving widespread interest across the aerospace industry [1–8]. Traditional actuators, 

such as electromechanical servos, can be used as linear and rotary actuators, combined with mechanisms 

to provide a powerful tool for morphing [9]. Smart materials have been used as actuators to control 

wing panels [10,11], spanwise deflection [12] and trailing-edge flaps [13,14]. Many morphing wing 

structures are designed as compliant mechanisms to allow the desired deformation [15–21]. A morphing 

leading-edge model was designed as a monolithic aluminium internal compliant mechanism to provide 

droop-nose morphing [18]. A compliant spar concept was presented and modelled to change the 

wingspan, which can enhance the operational performance and provide the roll control for a unmanned 

aerial vehicle (UAV) [19]. However, a potential consequence of wing morphing is that the wing 

structures become more flexible, and hence the dynamic properties of the wing and aerodynamic loads 

are affected. Therefore, the aeroelastic problems of morphing wings, as an interaction between the 

configuration-varying aerodynamics and the morphing structure, require investigation when 

dramatically changing their configurations during flight. To meet this challenge, effective theoretical 

formulations and computational methods are developed in this paper to model the coupled structural 

and aerodynamic behaviour of an active camber morphing wing. 

Significant research on the aeroelasticity of conventional wings already exists, but recently there has 

been increasing interest specifically in morphing wings. A real-time hybrid aeroelastic simulation 

platform for flexible wings and an efficient scheme to obtain the aerodynamic sensitivities for highly 

flexible aircraft have been studied [22,23].  A folding wing structure has been modelled theoretically 

using linear plate theory and its aeroelastic stability was studied by using a three-dimensional time 

domain vortex lattice aerodynamic model [24]. A further continuum model with exact solutions was 

developed to show the fundamental physics of folding-wing configurations [25,26]. The corresponding 

experiments were designed and the wind tunnel test results were compared with the predictions of a 

computational model for three folding wing configurations. The dynamical characteristics of a flexible 

membrane wing have been investigated and validated by using computational fluid dynamics 

simulations and experiments in a wind tunnel [27]. Moreover, a wide range of research in the aeroelastic 

analysis of 2D morphing aerofoil have been validated using  analytical aerodynamic models and CFD 

techniques which is extremely reliable and enables high-fidelity structural analysis. The dynamic 

properties of most compliant structures have been investigated in axial flow, such as a cantilevered plate 
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[28]. Similar to the cantilevered plate, interconnected beams in a fluid flow have been studied to show 

that the hinge position can affect the critical flutter speed [29]. A series of flexible aerofoils have been 

investigated by considering them as a beam structure in axial flow. Rayleigh’s beam equation was used 

to model a flexible aerofoil, which describes the aerofoil’s chordwise dynamics [30]. The effect of 

chordwise flexibility of a compliant aerofoil was investigated numerically to show the dynamical 

stability [31,32]. An actuated two-dimensional membrane aerofoil has been investigated experimentally 

and numerically and suggests that membrane flexibility might decrease the drag and delay the stall. In 

[33], a 2D aerofoil section fitted with a flap-like deformable trailing edge actuator was investigated to 

determine flutter and divergence instability limits. The in-plane motion and deformation of the 2D 

structure were described by three degrees of freedom, namely heave translation, pitch rotation and flap 

deflection, and the results show that the undeflected flap aerofoil section has a higher stability limit than 

the rigid aerofoil.  

A wide range of research into the aeroelastic characteristics of 2D aerofoils has been conducted using 

both analytical aerodynamic models and CFD techniques, which are extremely reliable and enable high-

fidelity structural analysis. High-fidelity analysis is limited to realistic and detailed models that implies 

high costs. The primary aim of this paper is to investigate a quick and easy way to access the theoretical 

formulation of an active camber morphing wing and its aeroelastic model. A promising active camber 

morphing concept is considered, known as the Fish Bone Active Camber (FishBAC) [34], which uses 

a biologically inspired internal bending beam and elastomeric matrix composite as the skin surface, as 

shown in Fig. 1. The benefit of active camber is that it is capable of large camber changes and morphs 

the camber of an aerofoil smoothly and continuously, so that the deformable part of the aerofoil will 

function as a flap. Hence, ensuring the stability of the deformable part is essential in such morphing 

camber applications. In addition, morphing camber has been studied by strategically locating negative 

stiffness devices to tailor the required deployment forces and moments for passive energy balancing 

[35]. Therefore, the ratio of the morphing segment length to the chord and relative stiffness tailored by 

negative stiffness of the deformable part are the most important to check and test intuitively. In other 

words, the active compliant segment can be used to stabilise the morphing aircraft while ensuring the 

compliant segment is also stable. Furthermore, most of the works on flexible aerofoils have considered 

the whole aerofoil as a compliant structure [30–32,36–38] or attached a compliant structure to the 

trailing edge as an additional part [39,40], which cannot accurately represent the aeroelastic model of 

FishBAC. For this study, the active camber morphing wing is considered as a low fidelity model with 

two chordwise segments; a non-morphing D-spar towards the leading edge and a biologically inspired 

compliant structure towards the trailing edge. The assembled aerofoil is then used to create a dynamic 

model of that can be used to provide insight into the system level dynamics, including the prediction of 

flutter. The model may also be used to design and assess feedback control schemes to improve the 
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dynamic performance. This analysis is different from those previously reported, since few papers in the 

literature consider dynamic models of morphing concepts.  

The low fidelity model is firstly considered as a rigid-flexible structure and Hamilton’s principle is used 

to develop the dynamic model based on flexible multi-body dynamics theory [41–44]. A traditional 

linear structural model is developed by neglecting the structural nonlinearity and using orthogonal 

structural mode shapes as a basis for the deformation of the flexible part.  

   

Figure 1. Active camber morphing wing. (a) Morphing wing in the undeformed state. (b) Morphing wing in the 

deformed state [45]. 

The aeroelastic model based on the active camber morphing wing is then investigated by again dividing 

the aerofoil into a rigid segment and a morphing segment, respectively. Two linear aerodynamic models 

are considered: quasi-steady and fully unsteady. The aerodynamic load provided by the rigid segment 

is considered as a transitional 2 degree-of-freedom (DOF) stall model and the aerodynamic load 

provided by the morphing segment is simulated as a compliant structure in an axial flow. Moreover, by 

considering the varying unsteady aerodynamic load characteristics with frequency, a model reduction 

method based on singular value decomposition has been used to analyse the unsteady aeroelastic 

problem [46]. 

Based on the theoretical formulation and its aeroelastic model, the eigenvalue evolution is then analysed 

to show unstable behaviour of the morphing wing with increasing free stream velocity. Two known 

cases from the literature [34,37] are used for validation, a classic 2 DOF model and a panel model. Then, 

since the goal of the FishBAC concept is to change the flight condition by operating the compliant 

segment, the compliant segment should enable a more stable system than a rigid airfoil, since control 

may be provided by the FishBAC acting a flap. Therefore, the relative length and stiffness of the 

morphing segment is then varied to change the flutter solutions, which can help to understand the 

fundamental aeroelastic behaviour of the active morphing camber wing. The results of the developed 

structural model coupled with the quasi-steady and unsteady aerodynamic models are compared to show 

the different dynamic behaviour and aeroelastic response of the active camber morphing wing. In 

addition, the free vibration response is investigated to show an immediate understanding of how the 
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morphing camber behaves under different dynamic conditions.  Finally, recognising that the compliant 

segment can function as a flap to change the aerodynamic load, a feedback control method is used to 

stabilise the morphing aircraft by using the compliant segment. The results show that the compliant 

camber wing can be stabilised by using the compliant segment.  

2. Development of the Structural Model  

The morphing camber model shown in Fig. 2 consists of two chord segments; the front segment is a 

non-morphing D spar and the rear segment is a biologically inspired compliant structure. The rear 

segment is clamped to the non-morphing D spar that can be considered rigid.  The rotation of the tendon 

spooling pulley causes the tendons to morph the trailing edge upward or downward and produces a 

continuous change of camber. 

 

Figure 2. Schematic of the morphing camber model [34]. 

The current derivation considers two camber segments of equal span, as shown in Fig.3. The front 

segment is a non-morphing D spar based on a symmetric, uncambered NACA 0012 aerofoil, which has 

been extensively analysed for its two-dimensional aeroelastic behaviour. It is assumed that the wing has 

support stiffness 𝑘ℎ and 𝑘𝛼 in the vertical (heave) and rotation (pitch) directions, respectively. Elastic 

beam theory is used to describe the dynamic behaviour of the camber segments. CM is the centre of 

mass of the rigid segment and EA is the elastic axis.  

 

Figure 3. Aerofoil schematic defining the two segment camber.  
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It is important to properly define the angle of attack 𝛼 and the plunge distance ℎ of the EA perpendicular 

to the flow. The flow velocity 𝑈∞ is in the 𝑋 direction, and ℎ is positive upwards in the 𝑌 direction, as 

shown in Fig. 3. Forces due to gravity are considered negligible and are thus excluded from the analysis.  

The overall kinetic energy is obtained by considering each segment separately. The kinetic energy is 

calculated by integrating the product of local mass and velocity squared across the wing. The resulting 

expression for the kinetic energy of the rigid aerofoil, 𝑇𝑟, is 

 

𝑇𝑟 =
1

2
∫𝜌𝐴(ℎ̇ + 𝛼̇𝑥)

2
𝑑𝑥 =

1

2
(∫𝜌𝐴ℎ̇2 𝑑𝑥 + 𝛼̇2 ∫𝜌𝐴𝑥2 𝑑𝑥 + 2ℎ̇𝛼̇ ∫𝜌𝐴𝑥 𝑑𝑥)

=
1

2
𝑚1ℎ̇

2 +
1

2
𝐼𝑟𝛼̇

2 + 𝑚1𝑥𝑐𝑔ℎ̇𝛼̇ 

(1) 

where 𝐼𝑟 and 𝑚1 are the moment of inertia and mass of the rigid part, respectively. 

The kinetic energy due to the camber morphing part, 𝑇𝑠 , is calculated from the velocities in the 

chordwise and thickness directions, which are determined with respect to a fixed coordinate system 𝑋𝑌 

as 

 𝑉1 = −𝛼̇𝑤 (2) 

 𝑉2 = ℎ̇ + 𝑤̇ + 𝛼̇(𝑥 + 𝑟) (3) 

where 𝑉1  is second order and may be neglected, 𝑟  is the distance between 𝐸𝐴  and 𝑅𝐸  and 𝑥  is 

coordinate of the unit mass of camber morphing part along chordline from 𝑅𝐸 . The transverse 

deformation of the morphing segment, 𝑤, is approximated by  

 𝑤(𝑥, 𝑡) = 𝜙1𝜉1 + 𝜙2𝜉2 + ⋯ = ∑𝜙𝑖𝜉𝑖

𝑛

𝑗=1

 (4) 

where 𝜙1, 𝜙2, …𝜙𝑖 are the basis functions and 𝜉1, 𝜉2, … 𝜉𝑖 . are the generalised displacements. The basis 

functions are conveniently given by modelling the flexible section as an Euler-Bernoulli beam. The 

basis functions are then the mass normalised cantilever beam modes with four boundary conditions 

(BCs): two from the clamped end of the morphing camber, and two from the free end of the morphing 

camber. These BCs are given by  

 𝑤(0, 𝑡) = 𝑤(1)(0, 𝑡) = 0 (5a) 

 𝑤(2)(𝑙, 𝑡) = 𝐸𝐼𝑤(3)(𝑙, 𝑡) = 0 (5b) 

where 𝑤(𝑖) denotes the 𝑖th order derivative of 𝑤 respect to 𝑥, for 𝑖 = 1,2,3….  

The kinetic energy of the flexible aerofoil, 𝑇𝑠, is expressed as 
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 𝑇𝑠 =
1

2
∫𝜌𝐴 (𝑉2)

2 𝑑𝑥 =
1

2
∫ 𝜌𝐴 (ℎ̇ + ∑𝜙𝑖𝜉𝑖̇

𝑛

𝑗=1

+ 𝛼̇(𝑥 + 𝑟))

2

𝑙

0

𝑑𝑥 (6) 

where ∫ 𝜙𝑖𝜌𝐴𝜙𝑖
𝑙

0
𝑑𝑥 = 1 . 

The kinetic energy of the whole aerofoil, 𝑇, can now be expressed as a fully discrete system, 

 𝑇 = 𝑇𝑠 + 𝑇𝑟 =
1

2
𝑚𝑎ℎ̇2 +

1

2
𝐼𝑎𝛼̇2 + 𝑆𝑎ℎ̇𝛼̇ +

1

2
∑𝜉𝑖̇

2

3

𝑖

+ ℎ̇ ∑𝑎𝑖

3

𝑖

𝜉𝑖̇ + 𝛼̇ ∑𝑏𝑖

3

𝑖

𝜉𝑖̇ (7) 

where 𝑚𝑎 = 𝑚1 + ∫ 𝜌𝐴
𝑙

0
𝑑𝑥 ,  𝐼𝑎 = 𝐼𝑟 + ∫ 𝜌𝐴(𝑥 + 𝑟)2𝑙

0
𝑑𝑥 ,  𝑆𝑎 = 𝑚1𝑥𝑐𝑔 + ∫ 𝜌𝐴(𝑥 + 𝑟)

𝑙

0
𝑑𝑥 , 𝑎𝑖 =

∫ 𝜌𝐴𝜙𝑖
𝑙

0
𝑑𝑥 and 𝑏𝑖 = ∫ 𝜌𝐴𝜙𝑖(𝑥 + 𝑟)

𝑙

0
𝑑𝑥.  

The terms in the potential energy come from the deformation of the rigid aerofoil and from the camber 

morphing part with respect to the undeformed configuration. The contributions to the potential energy 

from the former and latter sources are denoted by 𝑈𝑟 and 𝑈𝑠, respectively. Both 𝑈𝑟 and 𝑈𝑠 follow well-

known results from the literature and total potential energy 𝑈𝑡 is 

 𝑈𝑡 = 𝑈𝑟 + 𝑈𝑠 (8) 

The contributions to the potential energy of the system, assuming three beam modes are modelled, are 

then  

 𝑈𝑟 =
1

2
𝐾ℎℎ2 +

1

2
𝐾𝛼𝛼2 (9) 

 𝑈𝑠 =
1

2
∑𝜔𝑖

2𝜉𝑖
2

𝑛

𝑖

 (10) 

where 𝜔𝑖 is the 𝑖th order natural frequencies of the morphing segment. 

Assuming the stiffness arises from the heave and pitch springs, and the beam model of the camber, then 

the total potential energy is 

 𝑈 =
1

2
𝑘ℎℎ2 +

1

2
𝑘𝛼𝛼2 +

1

2
∑𝜔𝑖

2𝜉𝑖
2

𝑛

𝑖

 (11) 

The applied aerodynamic force cannot be derived from a scalar potential, and hence the equations of 

motion are derived using the Lagrange-d’Alembert equations, 

 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑗
−

𝜕𝑇

𝜕𝑞𝑗
+

𝜕𝑈

𝜕𝑞𝑗
= 𝑄𝑗  (12) 
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with 𝑗 = 1,2, . . 𝑛 and 𝑞 = {ℎ, 𝛼, 𝝃}, 𝑞̇ = {ℎ̇, 𝛼̇, 𝝃̇}. 

Thus, the equations of motion of the morphing camber are  

 𝜉𝑖̈ + 𝛼̈𝑏𝑖 + ℎ̈𝑎𝑖 + 𝜔𝑖
2𝜉𝑖 = 𝑄𝜉𝑖

 (13a) 

 𝐼𝑎𝛼̈ + 𝑆𝑎ℎ̈ + ∑𝑏𝑖

𝑛

𝑖

𝜉̈ + 𝐾𝛼𝛼 = 𝑄𝛼 (13b) 

 𝑚𝑎ℎ̈ + 𝑆𝑎𝛼̈ + ∑𝑎𝑖

𝑛

𝑖

𝜉̈ + 𝐾ℎℎ = 𝑄ℎ (13c) 

where 𝑄𝜉𝑖
, 𝑄𝛼 and 𝑄ℎ denote the aerodynamic generalised forces. The dynamical equations take the 

form 

 [
𝑰 𝒃𝑻 𝒂𝑻

𝒃 𝐼𝑎 𝑆𝑎

𝒂 𝑆𝑎 𝑚𝑎

] [
𝝃̈
𝛼̈
ℎ̈

] + [

𝑲𝝃𝝃 0 0

0 𝐾𝛼 0
0 0 𝐾ℎ

] [
𝝃
𝛼
ℎ
] = [

𝑸𝒘

𝑄𝛼

𝑄ℎ

] (14) 

The elements of the mass and stiffness matrices are functions of the physical and geometrical properties 

of the system and are fully represented by 𝑲𝝃𝝃 = diag(𝜔1
2, 𝜔2

2, ⋯ , 𝜔𝑛
2), 𝑸𝒘 = ( 𝑄𝜉1

, 𝑄𝜉2
, …𝑄𝜉𝑛

),  𝒃 =

( 𝑏1, 𝑏2, … 𝑏𝑛), 𝒂 = ( 𝑎1, 𝑎2, … 𝑎𝑛) and 𝑰 is the identity matrix. The forces on the modal coordinates due 

to the aerodynamics are given by 𝑄𝜉𝑖
= ∫ 𝜙𝑖𝑄𝑤

𝑙

0
𝑑𝑥, and is considered in more detail next. 

 

3. Aerodynamic Model  

Quasi-steady and fully unsteady aerodynamic models are considered to represent aerodynamic loads. 

A sketch of the configuration is shown in Fig. 3; the configuration is similar to model presented in [31], 

except that the rigid control surface is replaced by the morphing segment. 

 

A. Quasi-Steady Aerodynamic Model 

A stall model is introduced into the quasi-steady aerodynamic approach to represent the aerodynamic 

loads [47]. Thus, the lift and pitching moment are given by 

 
𝐿 = 𝜌𝑓𝜋𝑏2(ℎ̈ − (𝑥𝑓 − 𝑏)𝛼̈) + 𝜌𝑓𝜋𝑏2𝑈∞𝛼̇ + 𝜌𝑓𝑐𝜋𝑈∞

2 (𝛼 +
ℎ̇

𝑈∞
+ (

3

2
𝑏 − 𝑥𝑓)

𝛼̇

𝑈∞
)

+ 𝐿𝑚𝑜𝑟𝑝ℎ 

(15a) 
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𝑀 = 𝜌𝑓𝜋𝑏2(𝑥𝑓 − 𝑏)(ℎ̈ − (𝑥𝑓 − 𝑏)𝛼̈) −
𝜌𝑓𝜋𝑏4

8
𝛼̈ − (

3

2
𝑏 − 𝑥𝑓) 𝜌𝜋𝑏2𝑈∞𝛼̇

+ 𝜌𝑓𝑒𝑐2𝜋𝑈∞
2 (𝛼 +

ℎ̇

𝑈∞
+ (

3

2
𝑏 − 𝑥𝑓)

𝛼̇

𝑈∞
) −

1

2
𝜌𝑓𝑏3𝜋𝑈∞𝛼̇ + 𝑀𝑚𝑜𝑟𝑝ℎ  

(15b) 

where 𝜌𝑓 is density of air, 𝑏 is the semi-length of rigid segment, 𝑆 is the relevant reference area and 𝑈∞  

is the flow speed. Furthermore, Fig. 3 shows that the morphing segment provides additional 

aerodynamic load, i.e. lift and pitching moment, 𝐿𝑚𝑜𝑟𝑝ℎ and 𝑀𝑚𝑜𝑟𝑝ℎ, in Eqs. (15). By convention, the 

aerodynamic load provided by the morphing segment is simulated here as a cantilever beam in axial 

flow and only considering the non-circulatory pressure, i.e. ∆𝑃 = 𝑃𝑛𝑐 . Then, the corresponding 

aerodynamic load 𝐿𝑚𝑜𝑟𝑝ℎ and 𝑀𝑚𝑜𝑟𝑝ℎ are determined as  

 𝐿𝑚𝑜𝑟𝑝ℎ = ∫ ∆𝑃(𝑥, 𝑡) cos 𝜃
𝑙

0

𝑑𝑥 (16a) 

 𝑀𝑚𝑜𝑟𝑝ℎ = ∫ ∆𝑃(𝑥, 𝑡) cos 𝜃 (𝑥 + 𝑟)
𝑙

0

𝑑𝑥 (16b) 

where 𝜃 is the slope of the morphing segment, i.e. 𝜕𝑤 𝜕𝑥⁄ , and it varies along the morphing part. 

Recalling Eqs. (14), the corresponding generalized force of the 𝑖th mode can now be determined as  

 𝑄𝑢2
𝑖 = ∫ ∆𝑃(𝑥, 𝑡)

𝑙

0

𝜙𝑖(𝑥)𝑑𝑥 = ∫ 𝑃𝑛𝑐(𝑥, 𝑡)
𝑙

0

𝜙𝑖(𝑥) cos 𝜃 𝑑𝑥 (17) 

The small deflections of the morphing segment create a transverse velocity and thus a velocity potential. 

Thus, based on aerofoil theory [29,48], the non-circulatory pressure according to the linearised 

Bernoulli equation is  

 𝑃𝑛𝑐(𝑥, 𝑡) = −2𝜌𝑓

𝜕2𝑤

𝜕𝑡2
√𝑥(𝑙 − 𝑥) +

𝜌𝑓𝑈∞(2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)
(
𝜕𝑤

𝜕𝑡
+ 𝑈∞

𝜕𝑤

𝜕𝑥
) (18) 

𝑡 is time. The full aeroelastic equations of motion are of the form 

 (𝑨 + 2𝜌𝑓𝑩)𝒒̈ + (𝑪 + 𝜌𝑓𝑈∞𝑫)𝒒̇ + (𝑬 + 𝜌𝑓𝑈∞
2 𝑭)𝒒 = 0 (19) 

where 𝑨,𝑩, 𝑪, 𝑫, 𝑬, 𝑭 are the structural inertia, aerodynamic inertia, structural damping, aerodynamic 

damping, structural stiffness, and aerodynamic stiffness matrices respectively, and 𝒒 are generalised 

coordinates. Although general viscous damping could be used, in the examples, proportional structural 

damping is assumed, which expresses the damping matrix as a linear combination of the mass and 

stiffness matrices. Structural damping is notoriously difficult to model, and proportional damping is a 

simple approach used to introduce structural damping to the important modes contributing to flutter. 

Thus,    

 
𝑪 = 𝜁1𝑴 + 𝜁2𝑲 

(20) 
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where 𝜁1, 𝜁2 are real scalars. 

 

B. Unsteady Aerodynamic Model  

The pressure difference, according to Theodorsen, is divided into circulatory pressure (𝑃𝑐) and non-

circulatory pressure (𝑃𝑛𝑐) [29]. Hence, 

 ∆𝑃 = 𝑃𝑛𝑐 + 𝑃𝑐 (21) 

The small deflections of the morphing segment create a transverse velocity and a velocity potential. 

Thus, based on aerofoil theory [48,49], the circulatory pressure is created due to vortex shedding at the 

trailing edge of the morphing segment. According to Kelvin's theorem, vorticity has to be conserved in 

an inviscid flow for a given topology. Therefore, to conserve the total vorticity, if there is a vorticity 

distribution at the wake of the morphing segment, it should be balanced by a bound vorticity distribution 

in the morphing segment with opposite strength. This creates a circulatory velocity potential whose 

finite variation at the trailing edge is governed by the Kutta-Zhukovskii condition [49]. Thus, the 

circulatory pressure is given by 

 𝑃𝑐 = −
𝜌𝑓𝑈∞

√𝑥(𝑙 − 𝑥)
(
𝜕𝑤

𝜕𝑡
+ 𝑈∞

𝜕𝑤

𝜕𝑥
) [𝑙(2𝐶(𝑘) − 1) + 2𝑥(1 − 𝐶(𝑘))] (22) 

where 𝐶(𝑘) is the Theodorsen function.  

 𝐶(𝑘) =
𝐻1

(2)(𝑘)

𝐻1
(2)(𝑘) + 𝑖𝐻0

(2)(𝑘)
 (23) 

where 𝐻𝑛
(2)(𝑘) is the n-th Hankel function of the second kind. 

The corresponding aerodynamic loads, 𝐿𝑚𝑜𝑟𝑝ℎ and 𝑀𝑚𝑜𝑟𝑝ℎ, can now be determined using Eq. (19). 

The unsteady aerodynamic load produced by the aerofoil can be described as [50],  

 
𝐿 = 𝜌𝑓𝜋𝑏2(ℎ̈ − (𝑥𝑓 − 𝑏)𝛼̈ + 𝑈∞𝛼̇) + 2𝜌𝑓𝜋𝑈∞

2 𝑏𝐶(𝑘) (𝛼 +
ℎ̇

𝑈∞
+ (

3

2
𝑏 − 𝑥𝑓)

𝛼̇

𝑈∞
)

+ 𝐿𝑚𝑜𝑟𝑝ℎ 

(24a) 

 

𝑀 = 𝜌𝑓𝜋𝑏2(𝑥𝑓 − 𝑏)(ℎ̈ − (𝑥𝑓 − 𝑏)𝛼̈) −
𝜌𝑓𝜋𝑏4

8
𝛼̈ − 𝜌𝑓𝜋𝑏2𝑈∞ (

3

2
𝑏 − 𝑥𝑓) 𝛼̇

+ 4𝜌𝑓𝑒𝑏2𝜋𝑈∞
2 𝐶(𝑘) (𝛼 +

ℎ̇

𝑈∞
+ (

3

2
𝑏 − 𝑥𝑓)

𝛼̇

𝑈∞
) + 𝑀𝑚𝑜𝑟𝑝ℎ 

(24b) 

where 𝑒 = 𝑥𝑓 (2𝑏)⁄ − 1 4⁄ . 

Then, the full aeroelastic equations of motion are of the form 
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𝑴𝒕𝑼̈ + 𝑪𝒕𝑼̇ + 𝑲𝒕𝑼 = 0 

(25) 

where here the mass, damping and stiffness matrices combine the aerodynamic and structural 

contributions, and 𝑼 are generalised coordinates, 

 
𝑼 = {𝒒, 𝒗} 

(26) 

where 𝒗 are the additional aerodynamic DOFs, as defined in the Appendix. The aerodynamic stiffness 

matrices are also presented in the Appendix. 

 

4. Numerical validation and results  

The test case considered for numerical validation is the Fish Bone Active Camber presented by Woods 

et al. [34,51]. The properties of the morphing wing are listed in Table 1 and these parameters are used 

in the following numerical simulation. 

Table 1. Aerodynamic and structural properties of the morphing aerofoil.  

Parameter Value Units 

 Rigid camber segment 

Chord, 𝑐 0.254 m 

Mass of rigid part, 𝑚1 3.3843 kg/m 

Centre of gravity, 𝑥𝑐𝑔 0.0264 m 

Elastic axis, 𝑥0 0.0635 m 

Moment of inertia, 𝐼𝑟 0.0135 kg m2 

Proportional damping constant, 𝜁1 0.012 1/s 

Proportional damping constant, 𝜁2 0.0015 s 

Pitch stiffness, 𝑘𝜃 94.37 Nm/rad 

Plunge stiffness, 𝑘ℎ 2844.4 N/m 

 Morphing camber segment 

Length, 𝑙 0.25c m 

Young's modulus, 𝐸 72e9 Pa 

Thickness of morphing camber spine, 𝑡ℎ 1e-3 m 

Density, 𝜌 2700 kg/m³ 

Air parameters 

Density, 𝜌∞ 1.225 kg/m³ 

 

A. Eigenvalue evolution  

The section presents the resulting aeroelastic eigenvalues and the first three natural frequency of the 

morphing segment are considered. Most aeroelastic systems show unstable behaviour with increasing 

flow velocity. In this section, the stability condition of the aerofoil system is examined using a linear 

eigenvalue analysis. The homogenous form of the system of Eq. (14) may be linearized by neglecting 

the nonlinear excitations terms. The resulting linear homogenous system of equations is then easily 

transferred to state-space form as 
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𝜼̇ = 𝑯𝜼 

(27) 

where 𝜼 is the state vector defined by  

 𝜼 = {
𝒒

𝒒̇
} (28) 

𝑯 is the constant dynamic system matrix 

 𝑯 = [
[0](2+𝑛)×(2+𝑛) 𝑰(2+𝑛)×(2+𝑛)

−𝑴−𝟏𝑲 [0](2+𝑛)×(2+𝑛)
] (29) 

and 𝑛 is the selected number of mode shapes of 𝜱, 𝑲 is the stiffness matrices and 𝑰 is the identity matrix. 

For linear dynamic systems, the response of Eq. (27) is asymptotically exponentially stable in the sense 

of Lyapunov if and only if all of the eigenvalues of 𝑯 have negative real parts. The root locus plot of 

these eigenvalues can easily characterize the stability condition of the linear system. 

  

Figure 4. The real parts of the eigenvalue 𝜆 with respect to 𝑈∞ (solid or dash-dotted is stable, dashed line 

indicates a shift from stable to is unstable). The threshold value of 𝑈∞ is identified as the flutter velocity.  (a) 2 

DOF model with pitch and plunge [52] (b) a two dimensional panel model [49]. 

 

Given that the current aeroelastic model for a rigid-flexible camber configuration is relatively 

complicated, the results for two cases from the literature [49,52], a classic 2 DOF model and a panel 

model, are given in Fig. 4 and compared with established results from the literature. Figure 4 shows the 

results of a 2 DOF system with pitch and plunge and a two dimensional panel model using the same 

system parameters as those from the literature. The maximum airspeeds for a stable response for the 

pitch and plunge model are 18m/s (Quasi-steady) and 30m/s (Unsteady), which was observed at 26.7m/s 

from the experiment, as shown in Fig. 4(a). Figure 4(b) shows that the critical flutter speeds of the two 

dimensional panel are 23m/s (Quasi-steady) and 40m/s (Unsteady), compared to 29.5 m/s in the 

literature.  While the agreement between the proposed model and experiment isn’t perfect, it does show 
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roughly similar results and can give valuable predicts. Therefore, it is confidence to use this analysis 

for initial considerations of aeroelastic model of a camber morphing wing. 

We now consider the aeroelastic response of the compliant morphing structure. There is a scaling of the 

critical flutter velocity [29,48] given by 

 𝑈𝑐~√
𝐸𝑡ℎ

3

𝜌𝑓𝑙3
 (30) 

If the thickness of the panel increases, then the critical velocity will also increase. By considering 

different freestream velocities 𝑈∞, the critical flutter velocity can be determined from the unsteady and 

quasi-steady models. The importance of the aerodynamic model used can be appreciated by the dramatic 

differences of the flutter speeds. In addition, the structural natural frequencies of the compliant structure, 

modelled as a uniform beam, can be obtained as  

 𝜔𝑖 = √
𝐸𝐼

𝜌𝐴𝑙4
𝛽𝑖𝑙

4 (31) 

Therefore, it is apparent that a shorter chord compliant structure can be effective in delaying flutter. 

Based on the solution verification of the two baseline models, the eigenvalue evolution method is used 

to analyse the critical velocity of the morphing camber model under different aerodynamic loads using 

Eq. (14).  
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Figure 5. The real parts of the eigenvalue 𝜆 with respect to 𝑈∞ for the active morphing camber model (solid is 

stable, dashed is unstable). The threshold value that occurs of 𝑈∞ is identified as the flutter velocity.  Morphing 

camber model (a) without structural damping under quasi-steady aerodynamic load (b) with structural damping 

under quasi-steady aerodynamic load (c) without structural damping under unsteady aerodynamic load (d) with 

structural damping under unsteady aerodynamic load. 

 

Figure 5 shows the evolution of the real parts of the eigenvalue 𝜆 with respect to 𝑈∞ for the active 

morphing camber model. The two aerodynamic models are considered as loads for the structure model 

with or without structural damping. The different aerodynamic models give similar critical flutter 

speeds and the unsteady aerodynamic model always delays flutter. However, the dynamics with the 

unsteady model are significantly more complex. Moreover, structural damping tends to delay flutter as 

the damping helps to dissipate energy and hence is stabilising. 
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Figure 6. Flutter speed and frequency for different ratios of morphing segment (%) (a) flutter speed (b) flutter 

frequency. The grey lines are the natural frequencies of the structural model. 

 

Figure 6 illustrates the effects of the ratio of morphing segment (%) on the flutter speed and frequency. 

The ratio of morphing segment means the proportion between the morphing segment to the chord of 

the aerofoil. Note that the flutter speed is not a monotonic function of the ratio of morphing segment 

and indeed the quasi-steady value has a minimum. The ratio of morphing segment affects both the 

structural and aerodynamic models. Moreover, the effect of the quasi-steady aerodynamic theory is to 

reduce the variation in flutter speed. It is also seen that the quasi-steady aerodynamic theory gives an 

overly conservative prediction of flutter speed relative to the prediction of the fully unsteady 

aerodynamic theory. In addition, the critical velocity in unsteady aerodynamic model increases. The 

reason is that for a fixed chord length, increasing the morphing segment can reduce the inertia in the 

pitch and plunge motion and therefore the corresponding frequency increases. Figure 6(b) shows the 

flutter frequency for different ratios of morphing segment for the unsteady aerodynamic model. The 

flutter frequency increases with increasing morphing segment ratio and lies between the pitch and 

plunge natural frequency.  
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Figure 7. Flutter speed and frequency for different stiffnesses of the morphing segment (%). (a) Flutter speed 

(b) Flutter frequency. The grey lines are the natural frequency of the structural model. Solid lines indicate the 

3/4 chord morphing (75% ratio of morphing segment) and dash-dot lines indicate 1/4 chord morphing (25% 

ratio of morphing segment). 

 

Figure 7(a) illustrates the effects of different stiffnesses of the morphing segment (%) on the flutter 

speed. The stiffness of the morphing segment is changed by scaling its Young modulus. As the stiffness 

of the morphing segment affects the structural model, it produces some interesting changes in the 

aeroelasticity. When the stiffness of the morphing segment reduced to 60% , local flutter of the 

morphing segment will occur for the 3/4 chord morphing case. Figure 7(b) shows the flutter frequency 

for the different stiffness cases. There is a change in the flutter modes in the 3/4 chord morphing segment 

case, as the first mode frequency of morphing segment is between the natural frequencies of pitch (12.3 

Hz) and plunge (4.5 Hz), which is close to the first natural frequency of the morphing segment. The 

corresponding operational deflection shapes for the motion are shown in Fig. 8(b), which represents a 

large response of the morphing segment. When the key natural frequencies are brought closer together 

by the variation in stiffness of the morphing segment, the flutter speed becomes lower and vice versa. 

However, there is not an analogous phenomenon in the 1/4 chord morphing segment case, even if the 

stiffness is less than 10% of the baseline. Thus the length of the morphing segment is more sensitive 

than its stiffness, which confirms the results of Eq. (31). Moreover, there is a different critical velocity 

for 3/4 chord morphing segment case than other cases, and the 100% stiffness case is the same as the 

75% ratio of morphing segment result shown in Fig. 6. It is known that the length of the morphing 

segment can reduce the inertia in the pitch and plunge motion and therefore the corresponding frequency 

is increased. Furthermore, when keeping the same morphing segment length, decreasing the stiffness 

of morphing segment can reduce its rigidity and the corresponding frequency is decreased. By 

comparing Fig. 8(b) and Fig. 8(d) shows that the reduced rigidity of morphing segment can lead to 

corresponding increased motion of the morphing segment. Since the motion of morphing segment is 

coupled with pitch and plunge by recalling eq. (14), therefore the critical velocity will also change. The 
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results in Figs. 6 and 7 provide a parametric study that is useful in the design of the compliant segment 

for morphing camber. 

 

 

Figure 8. Mode shapes at the flutter speed. (a) 1/4 chord morphing segment with 10% relative stiffness (b) 3/4 

chord morphing segment with 10% relative stiffness (c) 1/4 chord morphing segment with 100% relative 

stiffness (d) 3/4 chord morphing segment with 100% relative stiffness. 

 

Figure 8 shows the corresponding mode shapes of the solution for different cases, and highlights that 

the characteristics of the morphing segment can influence the stability of the aerofoil. When the 

morphing segment becomes more compliant, the high response of morphing part can lead to instability 

of the whole aerofoil. Moreover, the flutter frequency in Fig. 7(b) gives similar results that the structural 

natural frequency of the morphing segment (i.e. its stiffness) can determine the flutter frequency if the 

rigidity of morphing segment is small.  

 

B. Free vibration analysis  

The system parameters to be used in the following numerical investigations are given in Table 1. To 

investigate the accuracy of the present analytical solutions, the 2 DOF aerofoil system with 

characteristics given in Table 1 is considered first. The initial conditions for the system are assumed to 

be a small perturbation of 𝛼 = 5°, resulting in the time response shown in Figs. 9. By comparing the 
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response of the morphing camber model (Morphing) and the 2 DOF aerofoil system (Rigid), the 

morphing segment is shown to cause a distinct delay without significant differences in the amplitude of 

the response. In addition, the response of the morphing camber model (Morphing) is in good qualitative 

agreement with the behaviour observed for the 2 DOF aerofoil system.  

   

Figure 9. Free vibration response. The solid line indicates the morphing camber model (Morphing) and the 

dashed line indicates the baseline 2 DOF aerofoil system (Rigid) with pitch and plunge. (a) Pitch response (b) 

Plunge response. 

 

Figure 10 shows the time responses for two different ratios of morphing segment of the morphing 

camber model (Morphing), in which M1 is the 1/4 chord morphing segment and M2 is the 3/4 chord 

morphing segment. Different ratios of morphing segment can change the response of the system, 

especially the camber tip response, as shown in Fig. 10(c). Moreover, the response in pitch shown in 

Fig. 10(a) shows that there is a certain reduction in amplitude for the longer morphing segment, as the 

energy is mainly applied to the vibration of the morphing segment. 

    

Figure 10. Free vibration response of two morphing camber model, M1 is 1/4 chord morphing segment and M2 

is 3/4 chord morphing segment. (a) Pitch response (b) Plunge response (c) Camber tip response. 

 

C. Aeroelastic response 

Depending on the air speed of the free stream, there are three different types of behaviour that exist in 

the dynamic response of aeroelastic systems: (1) the response will converge to the equilibrium states 

when the air speed is less than the flutter speed (2) the system will maintain self-sustained response 
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when the air speed is equal to or slightly above the flutter speed,  or (3) the response will diverge and 

the system will move into an oscillatory manner with increasing amplitude when the air speeds 

significant exceeds the critical flutter speed. Therefore, it is well known that the equations of motion of 

the morphing camber system just derived exhibit responses as discussed in Section 4.A. The system 

parameters to be used in the following numerical investigations are given in Table 1. 

    

Figure 11. Phase portraits for the quasi-steady aerodynamic model at critical velocity 𝑈∞ = 38.97m/s (1/4 

chord morphing segment). (a) Pitch-plunge (b) Camber tip phase portrait (c) FFT of camber tip displacement. 

 

The response was first simulated for a quarter chord morphing segment with the quasi-steady 

aerodynamic model and the air velocity close to the flutter speed shown in Fig. 5, namely 𝑈∞ =

38.97m/s. Due to geometric stiffness effects, the camber tip oscillates in a stable response in phase 

space, almost harmonically between ∓0.047 mm, as shown in Fig. 11. The FFT plot shows that a 

dominant harmonic for the camber tip displacement exists with a frequency of 9 Hz.  

    

Figure 12. Phase portraits for the unsteady aerodynamic model at critical velocity  𝑈∞ = 41.65m/s (a) Pitch-

plunge (1/4 chord morphing segment) (b) Camber tip phase portrait (c) FFT of camber tip displacement. 

 

The response was then simulated for a quarter chord morphing segment with the unsteady aerodynamic 

model and the critical velocity 𝑈∞ = 41.65m/s, as shown in Fig. 12. The FFT plot shows that the 

dominant harmonic exists, which is similar to the quasi-steady aerodynamic simulation, although there 

is also some response at just over 200Hz. The responses in phase space are different for the unsteady 

aerodynamic model, and larger harmonic regions of the camber tip phase portrait occur at a higher 

critical velocity.  
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  Figure 13. Phase portraits for the quasi-steady aerodynamic model at critical velocity 𝑈∞ = 40.07m/s (3/4 

chord morphing segment). (a) Pitch-plunge (b) Camber tip phase portrait (c) FFT of camber tip displacement. 

 

The 3/4 chord morphing segment model has also been considered under quasi-steady and unsteady 

aerodynamic loads, shown in Figs. 13 and 14, respectively. The responses in phase space under quasi-

steady aerodynamic load is similar to the responses in phase space for the 1/4 chord morphing segment 

model except the camber tip phase portrait has larger amplitude. The FFT plot of the camber tip 

displacement shows a single harmonic is dominant. Figure 14 shows that the frequency spectrum is 

broader for a longer morphing segment and the peak frequency of the camber tip response is changed 

to 11Hz. Compared with Fig. 13, it can be seen that the plunge and tip responses become smaller 

although the critical velocity is increased.  

   

  Figure 14. Phase portraits for the unsteady aerodynamic model at critical velocity  𝑈∞ = 57.65m/s(3/4 chord 

morphing segment). (a) Pitch-plunge (b) Camber tip phase portrait (c) FFT of camber tip displacement. 

 

5. Feedback Control of the Morphing Camber 

Based on the investigation in Section 4, if reasonable parameters of the compliant segment are chosen, 

the flutter of the morphing aircraft can only occur in pitch and plunge. Moreover, the concept of the 

morphing camber is to provide large camber changes smoothly and continuously, so the compliant 

segment can function as an active camber device to change the aerodynamic loads in real time. 

Therefore, this section presents a feedback control method to stabilise the morphing aircraft by using 

the compliant segment.  
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Figure 15 shows schematically the forces and moments generated by the tendons due to pulley rotation, 

the corresponding magnitudes of which have been derived previously [34]. 

 

Figure 15. Schematic representation of the antagonistic tendon actuation. 

The moment provided by the tendon spooling pulley can be expressed as   

 𝑀𝑡𝑒𝑛 = 2𝐹𝑡𝑒𝑛𝑦𝑡𝑒𝑛 (32) 

where 𝑦𝑡𝑒𝑛is tendon mounting offset and 𝐹𝑡𝑒𝑛 is the force in the tendon. 

The curvature of the compliant section can be integrated to give the slope as 

 
𝜕𝑤

𝜕𝑥
= ∫

𝑀𝑖𝑛

𝐸𝐼

𝑙

0

𝑑𝑥 = 𝜃(𝑥) (33) 

  

Figure 16. Structural results: (a) bending moment and (b) maximum slope 𝜃. 

 

Figure 16(a) shows that the compliant FishBAC camber is a positive stiffness system, and the required 

torque is proportional to the rotation angle [53]. Figure 16(b) shows the slope produced by integration 

of linearised bending moment. It can be seen that the deflection of the morphing segment is small for 

the given bending moment and the maximum slope of the morphing camber is 0.5rad. 

The corresponding aerodynamic loads, 𝐿𝑚𝑜𝑟𝑝ℎ and 𝑀𝑚𝑜𝑟𝑝ℎ, can now be determined from Eq. (16) as 
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 𝐿𝑚𝑜𝑟𝑝ℎ = ∫ ∆𝑃(𝑥, 𝑡) cos 𝜃
𝑙

0

𝑑𝑥 (34a) 

 𝑀𝑚𝑜𝑟𝑝ℎ = ∫ ∆𝑃(𝑥, 𝑡) cos 𝜃 (𝑥 + 𝑟)
𝑙

0

𝑑𝑥 (34b) 

where the quasi-steady aerodynamic model is considered here to design the control system. The non-

circulatory pressure can then be used by neglecting the time-varying terms, i.e. 
𝜕2

𝜕𝑡2 ,  
𝜕𝑤

𝜕𝑡
, and the 

aerodynamic load provided by the morphing camber is given by  

 𝐿𝑚𝑜𝑟𝑝ℎ = ∫ 𝑃𝑛𝑐(𝑥, 𝑡) cos 𝜃
𝑙

0

𝑑𝑥 = ∫
𝜌𝑓𝑈∞

2 (2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)

𝜕𝑤

𝜕𝑥
cos (

𝜕𝑤

𝜕𝑥
)

𝑙

0

𝑑𝑥 (35a) 

 𝑀𝑚𝑜𝑟𝑝ℎ = ∫ 𝑃𝑛𝑐(𝑥, 𝑡) cos 𝜃 (𝑥 + 𝑟)
𝑙

0

𝑑𝑥 = ∫
𝜌𝑓𝑈∞

2 (2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)
(𝑥 + 𝑟)

𝜕𝑤

𝜕𝑥
cos (

𝜕𝑤

𝜕𝑥
)

𝑙

0

𝑑𝑥 (35b) 

Small deflections of the compliant segment are used for control and the maximum slope of the morphing 

camber shown in Fig. 16 is 0.5rad. Therefore, it can be assumed that 

 cos 𝜃 = cos (
𝜕𝑤

𝜕𝑥
) ≈ 1 (36) 

and the aerodynamic load provided by the compliant segment can be approximated by 

 𝐿𝑚𝑜𝑟𝑝ℎ = ∫
𝜌𝑓𝑈∞

2 (2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)

𝜕𝑤

𝜕𝑥

𝑙

0

𝑑𝑥 =
𝜌𝑓𝑈∞

2

𝐸𝐼
∫

(2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)
𝑥

𝑙

0

𝑑𝑥𝑀𝑖𝑛 (37a) 

 𝑀𝑚𝑜𝑟𝑝ℎ = ∫
𝜌𝑓𝑈∞

2 (2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)

𝜕𝑤

𝜕𝑥
(𝑥 + 𝑟)

𝑙

0

𝑑𝑥 =
𝜌𝑓𝑈∞

2

𝐸𝐼
∫

(2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)
𝑥(𝑥 + 𝑟)

𝑙

0

𝑑𝑥𝑀𝑖𝑛 (37b) 

Thus, the generalised force vector is 

 𝐹𝑚𝑜𝑟𝑝ℎ =

[
 
 
 
 

𝜌𝑓𝑈∞
2

𝐸𝐼
∫

(2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)
𝑥

𝑙

0

𝑑𝑥

𝜌𝑓𝑈∞
2

𝐸𝐼
∫

(2𝑥 − 𝑙)

√𝑥(𝑙 − 𝑥)
𝑥(𝑥 + 𝑟)

𝑙

0

𝑑𝑥
]
 
 
 
 

𝑢 = 𝑮𝑢 (38) 

where 𝑀𝑖𝑛 = 𝑢, and 𝑀𝑖𝑛 is the control input applied to the system.  

Including this force into the equation for the pitch and plunge dynamics gives  

 
𝑑

𝑑𝑡
[

𝛼
ℎ
𝛼̇
ℎ̇

] = [
𝟎2×2 𝑰2×2

−(𝑨 + 2𝜌𝑓𝑩)
−𝟏

(𝑬 + 𝜌𝑓𝑈∞
2 𝑭) −(𝑨 + 2𝜌𝑓𝑩)

−𝟏
(𝑪 + 𝜌𝑓𝑈∞𝑫)

] [

𝛼
ℎ
𝛼̇
ℎ̇

] + 𝑮𝑢 (39) 

Then, the actuation 𝑢 is determined using full state feedback and a proportional controller as  
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 𝑢 = −𝑲𝒄(𝐱 − 𝐱𝑟) (40) 

where 𝑥 = [𝛼  ℎ  𝛼̇  ℎ̇]
𝑇

 is the state vector, 𝐱𝑟 = [0 0 0 0]𝑇  is the reference position, i.e. the 

desired stable location, and 𝑲𝒄 is the controller gain matrix. The system is first verified and then using 

an LQR controller by simple chosen 𝑄 = 𝐼 and 𝑅 = 1 to design the controller gain matrix. 

  

Figure 17. Example of free and controlled response at 45m/s (a) pitch response (b) plunge response (c) control 

input. 

   

Figure 18. Example of free and controlled response at 41m/s (a) pitch response (b) plunge response (c) control 

input. 

   

Figure 19. Example of free and controlled response at 38m/s (a) pitch response (b) plunge response (c) control 

input. 

Figure 17-19 show three working scenarios using the compliant segment to stabilise the aeroelastic 

system. Figure 17 shows an example at the freestream velocity of 45m/s, which exceeds the critical 

velocity. With the same initial conditions as before, the time response of the controlled system is shown 

in Figs. 17(a) and 17(b) for pitch and plunge, respectively. It can be seen that the compliant camber can 

be stabilised using the compliant segment. Figure 18 shows an example at the critical velocity of 41m/s. 

It can be seen that the compliant camber can be stabilised using the compliant segment with a lower 
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control input. However, when the air velocity is below the critical velocity, e.g. 38m/s, the response is 

shown in Fig. 19. Although the system can be controlled by using the compliant segment, the 

contribution of the compliant segment is not significant. Therefore, the compliant segment can stabilise 

the morphing aircraft by selecting a reasonable controller gain matrix. 

 

6. Conclusions 

A theoretical formulation of an active camber morphing wing and its aeroelastic model have been 

developed. A continuous representation of the morphing camber model is investigated and consists of 

two chord segments, a non-morphing D-spar and a biologically inspired compliant structure. Therefore, 

the morphing wing is studied as a rigid-flexible structure; the non-morphing D-spar behaves as a 

traditional two-dimensional aeroelastic system with pitch and plunge and elastic beam theory is used to 

describe the dynamic behaviour of the camber segments. Two aerodynamic models are considered and 

integrated with the structural model to determine the flutter solutions. A singular value decomposition 

method has been used to analyse the unsteady aeroelastic problem. Different parameters of the 

morphing camber device can be easily modified by using the developed aeroelastic model to examine 

changes in the flutter solutions. Of these parameters, the ratio of the length of the morphing segment to 

the chord, and the stiffness of the morphing segment, are of particular interest. The results of the quasi-

steady and unsteady aerodynamic model are compared to show that the quasi-steady aerodynamic 

model gives an overly conservative prediction of the flutter speed and the unsteady aerodynamic model 

reduces the motion of the structure. The response of the different model has been simulated to show the 

fundamental aeroelastic behaviour of morphing camber, including responses in phase space. Finally, 

the compliant segment is used to stabilise the morphing aircraft by feedback control. The theoretical 

formulation and results presented in this paper can be used to provide better predictions for the dynamic 

behaviour of active camber morphing wings, and provides insight into the aeroelastic problem of rigid-

flexible structures, both in the field of morphing aircraft and in other fields. The theoretical formulation 

and results presented in this paper can be used to provide rapid prediction of the dynamic behaviour of 

active camber morphing wings. 
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Appendix 

Unsteady Aerodynamic Model 

By using the Laplace transformation, the aerodynamic lift and moment can be rewritten as 

 

{−𝐿̅
𝑀̅

} = [𝜔2𝑴𝑎 − 𝑖𝜔𝑪𝑎0 − 𝑖𝜔𝐶(𝑘)𝑪𝑎
0 − 𝐶(𝑘)𝑲𝑎

0]𝒚̅(𝜔)

=

[
 
 
 

𝜔2𝑴𝑎 − 𝑖𝜔(𝑪𝑎0 + 𝐷𝑪𝑎
0) − (𝐷 − ∑ (

𝐶𝑝

𝐴𝑝
′ )

𝑛

𝑝=1

)𝑲𝑎
0

−

(

 ∑

𝑖𝜔 (𝐶𝑝𝑪𝑎
0 −

𝐶𝑝

𝐴𝑝
′ 𝑲𝑎)

𝑖(𝜔𝑏 𝑈∞⁄ ) − 𝐴𝑝
′

𝑛

𝑝=1
)

 

]
 
 
 

𝒚̅(𝜔) 

(A1) 

Theodorsen’s function can be evaluated in terms of Bessel functions of the first and second kind. Thus, 

 𝐶(𝑘) = 𝐷 + ∑
𝐶𝑝

𝑖𝑘 − 𝐴𝑝
′

𝑛

𝑝=1

, (𝑖 = √−1) (A2) 

where 𝑘 = 𝜔𝑏 𝑈∞⁄  is the reduced frequency [47]. For 𝑛 = 2, the rationalfit function in MATLAB was 

used to obtain 𝐷 = 0.508, 𝐴1
′ = −0.376, 𝐴2

′ = −0.091, 𝐶1 = 0.086, 𝐶2 = 0.022 and the fitted curve 

is shown in Fig. A1. 
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Figure A1. Theodorsen function and the fitted curve using ‘rationalfit’. 

Assuming 𝑽𝑝 =
𝑈∞𝐶𝑝

𝑏
𝑪𝑎

0 +
𝐶𝑝

𝐴𝑝
′ 𝑲𝑎, 𝐷𝑝 = 𝐷 − ∑ (

𝐶𝑝

𝐴𝑝
′ )

𝑛
𝑝=1 , 𝐴𝑃 = −𝐴𝑝

′ 𝑈∞ 𝑏⁄ , 𝑪𝑎 = 𝑪𝑎0 + 𝐷𝑪𝑎
0 , then Eq. 

(A2) can be rewritten as 

 {−𝐿̅
𝑀̅

} = [𝜔2𝑴𝑎 − 𝑖𝜔𝑪𝑎 − 𝐷𝑝𝑲𝑎 − (∑
𝑖𝜔𝑽𝑝

𝑖𝜔 +  𝐴𝑃

𝑛

𝑝=1

)] 𝒚̅(𝜔) (A3a) 

According to Volterra theory [54], the first-order convolution is chosen to give the aerodynamic lift and 

moment as 

 {−𝐿̅
𝑀̅

} = −𝑴𝒂𝒚̈(𝑡) − 𝑪𝑎𝒚̇(𝑡) − 𝐷𝑝𝑲𝑎𝒚(𝑡) − ∑ (𝑽𝒑 ∫ 𝑒−𝐴𝑝(𝑡−𝜏)𝒚̇(𝜏)
𝑡

−∞

𝑑𝜏)

𝑛

𝑝=1

 (A3b) 

Recall the structural dynamics equations from Eq. (13) by adding the damping term as 

 𝑴𝑠𝝃̈ + 𝑪𝑠𝝃̇ + 𝑲𝑠𝝃 = 𝑸 (A4) 

When 𝑛 = 1, the inertia force can be assumed as the external force according to d'Alembert’s principle 

by combining Eqs. (3) and (4) as 

 𝒇(𝑡) = 𝑪𝒚̇ + 𝑲𝒚 + 𝑽1 ∫ 𝑒−𝐴1(𝑡−𝜏)𝒚̇(𝜏)
𝑡

−∞

𝑑𝜏 (A5a) 

where 𝑪 = 𝑪𝑠 + 𝑪𝑎 and 𝑲 = 𝑲𝑠 + 𝐷𝑝𝑲𝑎. 

The last term is the time-domain relationship expressed using the relaxation integral between the force 

𝒇(𝑡) and the displacement 𝒚(𝑡) in one-dimensional problems [46]. According to Leibniz’s Rule: 

 𝒇̇(𝑡) = 𝑪𝒚̈ + (𝑲 + 𝑽1)𝒚̇ − (𝑽1𝐴1 ∫ 𝑒−𝐴1(𝑡−𝜏)𝒚̇(𝜏)
𝑡

−∞

𝑑𝜏) (A5b) 

Therefore, the singular value decomposition of 𝑽1 exists, and is a factorization of the form 

 𝑽1 = 𝑼1𝚺1𝑼𝟐 (A6) 

where 𝚺1 is  a diagonal matrix with non-negative real numbers on the diagonal, 𝑼𝟏
𝑻𝑼1 = 𝑰 and 𝑼𝟐

𝑻𝑼2 =

𝑰. 

Equation (A5a) is multiplied by 
1

𝐴1
 and then added to Eq. (A5b) to give 

 𝒇(𝑡) +
1

𝐴1
𝒇̇(𝑡) =

𝑪

𝐴1
𝒚̈ +

1

𝐴1
(𝑲 + 𝑼1𝚺1𝑼𝟐 + 𝐴𝑝𝑪)𝒚̇ + 𝑲𝒚 (A7) 

Then, by employing additional DOFs, Eq. (A7) can be written as 
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 [
𝑪 𝟎
𝟎 𝑽

] {
𝒚̇
𝒗̇
} + [

𝑲11 𝑲12

𝑲21 𝑲22
] {

𝒚
𝒗
} = {

𝒇
𝟎
} (A8) 

where 𝒗 is the vector of additional DOFs and 𝑲11 ∈ 𝑅𝑁×𝑁, 𝑲12 ∈ 𝑅𝑁×𝑁, 𝑲21 ∈ 𝑅𝑁×𝑁, 𝑲22 ∈ 𝑅𝑁×𝑁, 

𝑽 ∈ 𝑅𝑁×𝑁are all known matrices. Then 

 𝒗 = 𝑲12
−1(𝒇 − 𝑪𝒚̇ − 𝑲11𝒚) (A9a) 

 

𝒇 + (𝑲12𝑲2𝟐
−𝟏𝑽𝑲𝟏𝟐

−𝟏)𝒇̇

= (𝑲11 − 𝑲12𝑲2𝟐
−𝟏𝑲21)𝒚 + (𝑲12𝑲2𝟐

−𝟏𝑽𝑲𝟏𝟐
−𝟏𝑲11 + 𝑪)𝒚̇

+ (𝑲12𝑲2𝟐
−𝟏𝑽𝑲𝟏𝟐

−𝟏𝑪)𝒚̈ 

(A9b) 

In order to be equivalent to Eq. (A7), three equations can be obtained 

 𝑲12𝑲2𝟐
−𝟏𝑽𝑲𝟏𝟐

−𝟏 =
1

𝐴1
 (A10) 

 𝑲11 − 𝑲12𝑲2𝟐
−𝟏𝑲21 = 𝑲 (A11) 

 𝑲12𝑲2𝟐
−𝟏𝑽𝑲𝟏𝟐

−𝟏𝑲11 =
1

𝐴1

(𝑲 + 𝑼1𝚺1𝑼𝟐) (A12) 

Then, 

 𝑲2𝟐 = 𝐴1𝑽 (A13) 

 𝑲11 = 𝑲 + 𝑼1𝚺1𝑼𝟐 (A14) 

 𝑲12𝑽
−𝟏𝑲21 = 𝐴1𝑼1𝚺1𝑼𝟐 (A15) 

Therefore, by using 𝑽 = 𝚺1  

 𝑽 =
1

𝐴1
𝚺1 (A16) 

 𝑲𝟏𝟐𝐴1𝜮𝟏𝑲21 = 𝐴1𝑼𝟏𝜮𝟏𝑼𝟐 (A17) 

Equation (A8) can be rewritten as  

 𝑪𝒕𝑼̇ + 𝑲𝒕𝑼 = {
𝒇
𝟎
} (A18) 

where 

𝑪𝒕 = [
𝑪 𝟎

𝟎
1

𝐴1
𝚺1

],      𝑲𝒕 = [
𝑲 + 𝑼1𝚺1𝑼𝟐 𝑼𝟏𝜮𝟏

𝜮𝟏𝑼𝟐 𝚺1
] 

Finally, by considering the first 𝑛 order of ∑ (𝑽𝒑 ∫ 𝑒−𝐴𝑝(𝑡−𝜏)𝒚̇(𝜏)
𝑡

−∞
𝑑𝜏)𝑛

𝑝=1 , the total equations 
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 𝑴𝒕𝑼̈ + 𝑪𝒕𝑼̇ + 𝑲𝒕𝑼 = 0 (A19) 

where 𝑴𝒕 = 𝒅𝒊𝒂𝒈(𝑴𝑠 + 𝑴𝑎 0 ⋯ 0), 𝑪𝒕 = 𝒅𝒊𝒂𝒈(𝑪𝑠 + 𝑪𝑎
1

𝐴1
𝚺1 ⋯

1

𝐴𝑛
𝚺𝑛) and 

 𝑲𝒕 = [

𝑲𝑠 + 𝐷𝑝𝑲𝑎 + ∑ 𝑼1𝑝𝚺1𝑼2𝑝
𝑛
𝑝=1 𝑼𝟏𝟏𝜮𝟏 ⋯ 𝑼1𝑛𝜮𝒏

𝜮𝟏𝑼21 𝚺1 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝜮𝑛𝑼2𝑛 0 ⋯ 𝚺𝑛

]. 

The singular value decomposition of 𝑽𝑝 exists, and is a factorization of the form 

 𝑽𝑝 = 𝑼1𝑝𝚺𝑝𝑼2𝑝 (A20) 

where 𝚺𝑝  is a diagonal matrix with non-negative real numbers on the diagonal,  𝑼1𝑝
𝑻 𝑼1𝑝 = 𝑰  and 

𝑼2𝑝
𝑻 𝑼2𝑝 = 𝑰. 


